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Preface

Exploiting the potentialities of electromagnetic (EM) fields with high
pulse rates is at the core of the Computer Science’s challenging demand
for designing ultra-fast integrated circuits that are capable of handling the
digital signals involved, next to exploiting the possibilities of wireless (i.e.,
pulsed EM fields supported) digital information transfer.

To address this challenge, the Workshop Pulsed Electromagnetic
Fields: Their Potentialities, Computation and Evaluation collects
state-of-the-art contributions on the computational modeling of pulsed EM
fields in configurations that are representative for road mapping future de-
velopments. Furthermore, it sets itself the task to accommodate relevant in-
teraction as to in which direction these developments are to be pursued. The
included works cover a very broad range, from the physical and mathemat-
ical foundations up to operational systems making use of the potentialities
arising from the use of pulsed EM fields.

The workshop will set the course for an intensified and formalized coop-
eration on fundamental research between the Delft University of Technology
and the University of Hong Kong. Two aspects are here primarily envisaged:
the impact of pulsed EM fields with ultra-high pulse rates on the methods for
designing integrated circuits and systems for inter- and intra-device wireless
transfer of information, and the evaluation of the possible impact of such
fields on the ‘Electromagnetic environment’, in particular their Electromag-
netic Interference with ‘living and inert matter’.

The organizers express their gratitude to the Netherlands Organisation
for Scientific Research (NWO) and Research Grants Council of Hong Kong
(RGC) / University Grants Committee of Hong Kong that provided the
financial means for the workshop’s organization via their “Collaboration
Hong Kong – Joint Research Scheme”. They also extend their gratitude to
the specialized Delft University of Technology departments that provided
the logistic support for this event.

Ioan E. Lager
Li Jun Jiang.

Delft and Hong Kong, January 25, 2013.
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Wave analysis of Airy beams

and Airy Pulsed Beams

Yan Kaganovsky† and Ehud Heyman‡
†Duke University, Dept. of Electrical and Computer Engineering,

Durham, NC 27708, USA, e-mail: yankagan@gmail.com

‡Tel Aviv University, School of Electrical Engineering,
Tel Aviv 69978, Israel

Abstract

The Airy beam (AiB) has attracted a lot of attention recently be-
cause of its intriguing features. We have previously provided a
cogent physical explanation for these properties by showing that
the AiB is, in fact, a caustic of rays that radiate from the tail of
the Airy function aperture distribution. We have also introduced a
class of ultra wide band (UWB) Airy pulsed beams (AiPB), where
a key step has been the use of a proper frequency scaling of the ini-
tial aperture field that ensures that all the frequency components
propagate along the same curved trajectory so that the wavepacket
of the AiPB does not disperse. An exact closed form solution for
the AiPB has been derived using the spectral theory of transients
(STT) which is an extension of the well know Cagniard–de Hoop
(CdH) method. In this paper we discuss the properties of the AiB
and AiPB, and use the present problem to discuss the relation be-
tween the CdH method and the STT.

1 Introduction

Recently, a class of Airy beam (AiB) solutions of the paraxial time-
harmonic wave equation was introduced [1–4]. Originally, these beams were
formulated in a 2D coordinate space, say (x, z), and were generated by set-
ting an Airy function as the initial field distribution in the aperture plane
z = 0. Later on, finite energy AiB’s were obtained by multiplying the Airy
function aperture distribution by exponential or Gaussian windows, leading
to closed form field solutions in [2] and [3], respectively.

Pulsed Electromagnetic Fields: Their Potentialities, Computation and Evaluation
I. E. Lager and L. J. Jiang (Eds.). c© 2013 Delft University of Technology and IOS Press.
All rights reserved.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi: 10.3233/978-1-61499-230-1-1



2 Wave analysis of Airy beams and Airy Pulsed Beams

Figure 1: Ray description of the Airy beam plotted on a background of
the intensity of the Airy beam in (2) (see [6, Fig. 1]). The z and x axes
are normalized with respect to the Fresnel length zF and the beamwidth
W , respectively. As discussed in (7), the rays of species Û+ (solid lines)
radiate to the right with respect to the z-axis and converge to a caustic
that delineates the AiB propagation trajectory. Species Û− (dashed-dotted
lines) radiates to the left and diverges. As discussed in (8), species Û+

has additional set of rays that emerge from distant points in the aperture
(beyond the figure frame) and do not converge on that caustic. These rays
are shown in Fig. 2 but they have been removed here for clarity. Other
parameters that appear in this figures are used in [6] but are not used here.

The AiB’s attracted a lot of attention because of their intriguing fea-
tures, the most distinctive one is the propagation along curved trajectories
in free-space. These beams are also weakly diffractive along their trajecto-
ries, i.e., they retain their structure and remain essentially diffraction-free for
distances that are much longer than the conventional diffraction (Rayleigh)
length of Gaussian beams with the same width [2]. Another interesting fea-
ture, pointed out in [5], is the ability of the AiB to ‘heal’ itself, i.e., regenerate
itself if the main beam is obstructed.

A cogent physical description to the AiB’s and their intriguing properties
has been presented in [6]. In that paper we have shown that the AiB is not
generated by the main lobe of the Airy function in the aperture, but rather
it is a caustic of rays that emanate from the oscillatory tail of this function
and then focus on the caustic (Fig. 2). This also implies that the evolution
of the main lobe of the AiB along the curved trajectory is not described by
a local wave dynamics, and hence it cannot be regarded as a ‘beam field’
in that sense. These concepts were extended in [7] to construct an AiB
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in a 3D coordinate space, where the structure of the caustic is much more
complicated and requires the use of catastrophe theory.

The results of [6] have been utilized in [8] to introduce a class of ultra
wide band (UWB) Airy pulsed beams (AiPB) with frequency independent
ray skeleton, thus ensuring that all the frequency components of the AiB
propagate along the same curved trajectory and in the overall, the AiPB
wavepacket does not disperse. We also derived an exact closed-form TD so-
lution for the AiPB via the spectral theory of transients (STT) [9–12]. The
TD properties of the AiPB provide further insight into the wave mechanism
of the AiB. Finally, in [7] we extended the non dispersive AiB solution to
a 3D space where the caustic has the much more complicated structure of
a hyperbolic umbilic catastrophe that evolves into a parabolic umbilic catas-
trophe.

The STT is an extension of the celebrated Cagniard–de Hoop (CdH)
method [13–15] for the direct inversion into the TD of FD solutions that are
given as spatial-spectrum integrals. In the CdH method, the TD solutions
are recovered by manipulating the FD spectral integrals into a form from
which one may infer the TD solutions. In the STT, on the other hand, the
FD integrals are converted to the TD so that the TD fields are expressed as a
spatial-spectrum integral of transient plane waves. This STT integral can be
evaluated in a closed form, leading to results that are similar to those derived
via the CdH method in those cases where the latter is applicable. Yet the
STT provides a more flexible framework that may be used in cases where the
CdH cannot be applied, e.g., problems involving reflections and diffraction
of complex source pulsed beams (CSPB) [16, 17] (see STT solutions of 3D-
CSPB reflection and diffraction at plane dielectric interfaces [18] and at
wedges [19–21]). One of the main goals of the present paper is to discuss the
concepts of the STT in the context of the AiPB where the CdH approach in
not applicable.

The presentation starts in Section 2 with a wave-analysis of the AiB
in the FD. It presents the ray interpretation of the AiB and the frequency
scaling of the parameters such that the radiating field is non-dispersive in
the sense that the ray skeleton and the propagation trajectory are frequency
independent. The STT formulation and the derivation of the exact TD
solution (21) are then considered in Section 3, following some numerical
results that provide further insight into the wave mechanism of the AiB.
The exact solution describes the field everywhere as an implicit function of
space and time. One may derive explicit wavefront approximations for the
time windows near the pulse arrival. This topic and others are discussed
in [8].



4 Wave analysis of Airy beams and Airy Pulsed Beams

2 Non dispersive Airy beams – frequency domain
representation

The finite-energy non dispersive Airy beams (AiB) field Û(x, z) in the
half-space z > 0 of a 2D coordinate frame r = (x, z) is generated by the
aperture field distribution at z = 0

Û0(x
′;ω) = Ai(β−1/3k2/3x′)eαkx

′
(1)

where x′ referrers to points in the aperture, Ai is the Airy function, and the
exponential window is added in order to render the energy of this distribution
finite. Here and henceforth, an over hat denotes time-harmonic constituents
with harmonic time-dependence e−iωt, k = ω/c and a subscript 0 indicates
values in the z = 0 plane.

In (1) we used a specific frequency scaling of the parameters such that β
and α are frequency-independent parameters. This scaling, first introduces
in [7] in contradistinction to previous suggestions (e.g., [22]), ensures that
the radiating AiB is non-dispersive in the sense that it has a frequency inde-
pendent ray skeleton (see (7)) thus ensuring that all frequency components
propagate along the same ray trajectories and focus onto the same caustic
which delineated the AiB propagation trajectory (see (3)). We note that the
parameters β and α used here are related to the parameters x0 and α0 used
in the AiB literature (e.g., [2]) via x0 = β1/3k−2/3 and α0 = (kα)1/3.

The paraxial solution for the radiating AiB field due to the initial con-
ditions in (1) is [2]

Û(r;ω) = Ai
[
(kβ)2/3

(
x/β − (z/2β)2 + iαz/β

)]
×eik(z+xz/2β−z3/12β2+α2z/2)ekα(x−z2/β). (2)

One readily verifies that the beam envelope shifts transversely without change
along a parabolic trajectory (see Fig. 1)

x/β =
(
z/2β

)2
. (3)

Note that this trajectory is frequency-independent because of the frequency
scaling of the parameters in (1).

2.1 Ray representation

In order to facilitate ray analysis we use the asymptotic expression Ai(ξ) ∼
(−π2ξ)−1/4 sin

[
2/3(−ξ)3/2 + π/4

]
for ξ � −1 and decompose the aperture
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Figure 2: Local and global structures of ray species Û+. Note the scale
difference of the x axes in (a) and (b). All axes are normalized. (a) The
solid line rays radiate from the aperture at z = 0 and converge onto a
caustic (dashed line). The dashed line rays originate at distant points where
the aperture field is weak (see also (b)). They intersect the caustic at very
late times, beyond the pertinent time-window of the AiPB, and do not focus
there. These rays are not included in the paraxial solution of (2). Points
A = (x, z) = (0.023, 0.3)β and B = (0.067, 0.5)β are typical points on the
caustic where the field will be calculated in the sequel. (b) The global ray
picture described by the cusped caustic formed by the two grey caustics 2A
and 2B that merge into a cusp. This figure is taken from [7, Fig. 16]. That
reference deals with 3D Airy beams, where the caustic has a much more
complicated 3D structure of a hyperbolic umbilic catastrophe that evolves
into a parabolic umbilic catastrophe [26, Fig. 7.3]. Nevertheless, since this
figure depicts a cross sectional cut of the catastrophe in the symmetry plane,
the cusped caustic above referred to describes also the ray structure of the
2D problem considered here with β̃ = β and x̃ = x. It consists of two parts
2A and 2B that merge in a cusp. The solid lines are the corresponding rays.

field at x � −k−2/3β1/3 into a sum of two local plane wave constituents,
viz.

Û0(x
′) ≈ A+

0 exp
(
ikψ+

0

)
+A−

0 exp
(
ikψ−

0

) ≡ Û+
0 (x′) + Û−

0 (x′) (4)

where the initial phase and amplitude functions ψ±
0 and A±

0 are given by

kψ±
0 (x

′) = ∓[k(2/3)(−x′)3/2β−1/2 + π/4
]

(5)

A±
0 (x

′) = ±(i/2
√
π)
[− xk2/3β−1/3

]−1/4
eαkx

′
. (6)

We assume here that α is sufficiently small so that it is included in the
amplitudes functions A±

0 and note in the phase ψ±
0 . This assumption will

be removed in the exact TD analysis in Section 3.
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The initial fields Û±
0 in (4) give rise to rays that emerge from points

x′ < 0 in the aperture at local angles (measured with respect to the z-axis)

θ±(x′) = sin−1
[
∂x′ψ±

0 (x
′)
]
= ± sin−1[(−x′/β)−1/2]. (7)

Ray species Û− emerges to the left with respect to the z axis and diverges
(dashed-dotted line rays in Fig. 1), giving rise to a weak contribution there.
Ray species Û+ emerges to the right (solid lines in Fig. 1) and converges
to a caustic that delineates the curved beam trajectory. The paraxially
approximated caustic is given in (3), but the exact caustic can be obtained
via a standard ray analysis as outlined in the Appendix of [8].

From (7), the exit points x′ of species Û+
0 (x) corresponding to a given

observation point r = (x, z) on the lit side of the caustic is found via

sin θ(x′) = (−x′/β)−1/2 = (x− x′)/ρ, ρ =
√

(x− x′)2 + z2, (8)

with ρ denoting the distance along the ray. This equation has three solu-
tions, denoted as x′1,2,3 in accord with their arrival times. Rays 1 and 2
converge onto the caustic such that ray 2 has touched the caustic before
reaching the observer while ray 1 has not (see Figs. 1 and 2(a)). The third
solution corresponds to rays that originate at distant points where the aper-
ture field is weak (dashed lines in Fig. 2(a)). They intersect the caustic at
very late times, beyond the pertinent time-window of the AiPB, and yield
weak contributions. By definition, these contributions are not included in
the paraxial solution of (2). Note that the paraxially approximated caustic
in (3) is obtained from (8) by replacing there ρ → z.

The complete (exact) ray structure calculated via (8) is described by
the cusped caustic in Fig. 2(a) consisting of two caustics 2A and 2B (grey
lines) that merge in a cusp (Fig. 16 from [7]). Caustic 2A is formed by the
convergence of rays 1 and 2, and describes the AiB propagation trajectory.
Caustic 2B is formed by the convergence of rays 1 and 3, and, as noted earlier,
it is irrelevant for the field near the AiB propagation trajectory. Note that
beyond the cusp, the field disperses and losses its beam shape. This limits
the AiB propagation range to a distance of order 0.6β (see Fig. 2(a)) hence
β should be chosen according to application. The range is also determined
by the parameter α which controls the decay rate along the beam axis.

The field of the AiB may now be calculated using ray techniques. A
uniform ray-based solution that is valid near the caustic where the standard
ray solution fails, has been derived in [6] via the the uniform geometrical
optics (UGO) [23, 24]. The UGO solution fully agrees with the paraxially
approximated AiB solution in (2) in the region where the latter is valid. This
ray solution provides a cogent physical description to the AiB and explains
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its intriguing properties. It is also more accurate than the solution in (2), in
particular at large ranges where (2) fails since the parabolic trajectory in (3)
deviates substantially from the true caustic obtained via the ray analysis.
We do not present the analysis here; this has been done in [7] in the context
of the more complicated 3D AiB (see Figs. 11,12 there).

3 Time domain solutions – Airy pulsed beams

As discussed in Section 2, the specific scaling of the initial field in (1)
ensures that all frequency components of the field are AiB that propagate
along the same curved trajectory (3). If the initial conditions are pulsed,
they generate a non-dispersive wavepacket that propagates along the curved
trajectory, henceforth denoted as Airy Pulsed Beams (AiPB).

The TD expression for the AiPB can be obtained by converting the FD
paraxial solution (2). Here, however, we use an alternative approach which is
based on an exact spectral representation in the TD via the spectral theory
of transients (STT) [9–12]. This approach leads to an exact closed-form
TD solutions for the AiPB and it does not suffer from the difficulties of the
paraxial approximation noted above.

The following section reviews the concepts of the STT in the context
of the AiPB. In Section 3.2 we construct the STT integral representation
of the time-dependent AiPB field, which is a spatial-spectrum integral of
transient plane waves. The general procedure for evaluating this integral is
discussed in Section 3.3, while Section 3.4 presents the details of the spectral
evaluation in the present case. Finally in Section 3.5 we present numerical
results for the AiPB that provide new insight into the wave mechanism of
the AiB.

3.1 Analytic signal formulation

Analytic signals are extensions of physical time signals that can accom-
modate a complex time variable. Therefore, they are a useful tool in TD
wave theory in applications involving complex propagation times delays, e.g.,
in complex-spectrum representations such as the STT, or in accommodating
the off-axis field of beams [16,17].

An analytic TD wave-function is related to the FD solution Û(r;ω) via
the one sided Fourier transform

+
u(r, t) =

1

π

∫ ∞

0
dωe−iωt f̂(ω)Û(r;ω), Im(t) � 0 (9)
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where Û is a frequency domain solution and f̂(ω) is an arbitrary temporal
spectrum. Since the integral converges for real t, it also converges for
all t ∈ C

−, the lower half of the complex plane, thus defining an analytic
function there. Here and henceforth analytic signals are denoted by an over
+ symbol. The physical signal field for real t is obtained by

u(r, t) = Re
[
+
u(r, t)

]
, Im(t) ↑ 0. (10)

Actually, multiplying
+
u by a complex parameter eiγ , γ ∈ [−π, π], one obtains

via (10) a real solution u(r, t) as a linear combination of Re
(

+
u
)
and Im

(
+
u
)
.

In (15) we make use of the convolution theorem for analytic signals.

Stated generally, given two analytic signals
+

f and
+
g, with spectra f̂ and ĝ,

the analytic signal
+
w corresponding to ŵ = f̂ ĝ is

+
w(t) =

1

π

∫ ∞

0
dωe−iωt f̂(ω) ĝ(ω) =

1

2

∫ ∞

−∞
dt′

+

f(t′) +
g(t− t′)

≡ 1

2

+

f(t)⊗ +
g(t), (11)

where Im(t) � 0 while the t′-integration is performed along the real axis.

3.2 STT integral representation of the AiPB

In order to derive the STT representation of the AiPB, namely its repre-
sentation as a spectrum of transient plane-waves, we start with the spectral
(plane-wave) representation of the FD aperture field (1) [25, Eq. (9.5.4)]

Û0(x
′;ω) =

ω1/3

2π

∫ ∞

−∞
dξ Aeiωτ0 (ξ) eiωξx

′/c, (12)

τ0(ξ) = β(ξ + iα)3/3c, A = (β/c)1/3 (13)

where eiωξx
′/c in (12) is identified as the Fourier kernel, and the spectral

variable ξ is normalized such that the frequency ω appears explicitly in this
kernel. With this normalization, ξ has a frequency-independent geometrical
interpretation that enables a closed form inversion of the spectrum to the
TD, as in (15).

The radiated field is obtained by adding the spectral propagator, viz.

Û(r;ω) =
ω1/3

2π

∫
C
dξ Aeiωτ(ξ), τ(ξ; r) = τ0(ξ) + ξx/c+ ζz/c (14)
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where ζ =
√

1− ξ2 is the spectral wave-number in the z-direction, chosen
with Im(ζ) � 0 for ω > 0, and the integration contour C extends along the
real ξ axis from −∞ to ∞, passing above and below the branch point ξ = ∓1
corresponding to ζ (Fig. 3). Equation (14) expresses the field as a spectrum
of plane-waves propagating at angles θ(ξ) = sin−1 ξ with respect to the z
axis.

The TD solution is obtained now by applying the analytic (one-sided)
Fourier transform (9), obtaining

+
u(r, t) =

1

2π2

∫ ∞

0
dωe−iωt ĝ(ω)

∫
C
dξ Aeiωτ(ξ) (15)

where, for simplicity, we use f̂(ω) = ω−1/3ĝ(ω).

The reasons for using the analytic signal formulation are:

• The non dispersive spectral integral in (14) has a different form for
ω > 0 and ω < 0 (e.g., for ω < 0, the square root of ζ in (14) should be
chosen with Im(ζ) � 0). Leaving out the negative frequencies simplifies
the analysis.

• The one sided transform allows using Im(t) � 0 and switching the order
of the ξ and ω integrations in (15). The latter can then be evaluated
in closed-form as in (16).

• Adding a small imaginary part to t displaces the location of the inte-
grand’s singularities in the complex ξ plane in a way that clarifies their
location with respect to the integration path (see (19)).

Following the discussion above, we switch the order of integrations in (15)
and evaluate the ω integration in a closed form, using also (11), obtaining

+
u(r, t) =

1

2

+
g(t)⊗ −i

2π2

∫
C
dξ

A

t− τ(ξ)
. (16)

The ξ-integral in (16), denoted as the STT integral, represents the field as a
spectrum of transient plane-waves. It is convenient at this point to change
the definition of the complex square root in ζ such that Re(ζ) � 0 on the
upper Riemann sheet [9, 10]. The resulting branch cuts of ζ extend along
the real ξ-axis from ∓1 to ∓∞, respectively (Fig. 3). This change has no
effect on the result of the integral.

There are several classes of signals for which the convolution above can
be evaluated in a closed-form. Here we use the class of analytic δ signals
whose spectral and temporal counterparts are given by

ĝ(ω) = eiγ(−iω)me−ωT ,
+
g(t) = eiγ

+

δ(m)(t− iT ) = eiγ∂m
t

1

πi

1

t− iT
(17)
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with m = 0, 1, 2.... The parameter T > 0 is proportional to the pulse length.
The amplitude parameter eiγ , where γ ∈ [−π, π], controls the balance be-
tween the real and imaginary parts of the analytic signal when one calculates

the physical signal via (10). The function
+

δ(m) is the m-th derivative of the
analytic δ function, having m oscillations for |t| < T and a t−m−1 decay rate
for |t| � T . In the example of Section 3.5 we use m = 2.

Using (17) and (11), Eq. (16) becomes

+
u(r, t) = ∂m

t

−ieiγ

2π2

∫
C
dξ

A

t− τ(ξ)− iT
. (18)

3.3 Evaluation of the STT integral

The integral in (18) has time-dependent poles ξ(t) in the complex ξ plane,
defined by

τ [ξ(t)] = β(ξ + iα)3/3c+ ξx/c+ ζz/c = t− iT. (19)

The solutions ξ(t) to (19) are generally found numerically via a search algo-
rithm. This search is simplified by using, as a starting point, the paraxial
approximation ζ ≈ 1 − ξ2/2, in which case (19) reduces to a third order
polynomial equation with a closed-form solution. These solutions are gener-
ally complex, and are located in the upper and in the lower Riemann sheets
(URS or LRS, respectively), where Re(ζ) ≷ 0. Further details are given in
Section 3.4 and Figs. 3 and 4.

The integral in (18) can be evaluated by closing the integration contour
at infinity about the lower or the upper half of the complex ξ-plane, thus
expressing the field as contributions from the poles ξ(t) lying in the respective
half plane, plus a contribution from the branch-cuts of ζ that extend along
the real ξ-axis,

+
u(r, t) = ∓

∑
p

∂m
t

Aeiγ

πτ ′
[
ξ(p)(t)

] + ∂m
t

−ieiγ

2π2

∫
I±
b

dξ
A

t− τ(ξ)− iT
(20)

� ∓
∑
p

∂m
t

Aeiγ

πτ ′
[
ξ(p)(t)

] (21)

where the upper and lower signs correspond to the upper or lower half-plane
closures, respectively. The first term in (20) represents the contribution of
all the poles ξ(p)(t) in the respective half plane with p being an index and
τ ′ = ∂ξτ . Referring, for example, to the ξ-plan configuration in Figs. 3
and 4 (see discussion in Section 3.4 below), choosing the upper or the lower
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Figure 3: The complex ξ plane of the STT integral (18) for a typical ob-
servation point on the lit side of caustic (specifically, this point is displaced
horizontally by Δx = −2.5 10−3β from point A in Fig. 2(a) that resides on
the caustic). Wiggly lines: branch cuts of ζ separating the upper Riemann
sheet (URS) where Re ζ > 0 from the lower Riemann sheet (LRS) where
Re ζ < 0. C: the integration contour in Eqs. (14) and (18). Square tags:
stationary points ξ1,2,3 corresponding to rays r = 1, 2, 3 in Fig. 1 (for clarity,
ray 3 is suppressed in Fig. 1 but it is shown in Fig. 2(a)). t1,2,3: ray arrival
times. Note that t1 ∼ t1, but t3− t1,2 � T . ξ(p)(t), p = 1, 2, ...6: trajectories
of the 6 poles ξ(t) of (19) as a function of t; poles on the URS and LRS are
denoted by solid or dashed lines, respectively. The tags on the trajectories
denote values of t there. The poles p = 1, 3 are always in the URS; p = 5, 6
are always in the LRS; p = 2, 4 are located first in the LRS and then cross
to the URS. In order to improve visibility, we displaced the poles from the
real ξ axis by choosing large T , T = 10−2β/c, but in the field calculations
we used T = 10−6β/c, yielding the poles map in Fig. 4. Here and in the
following figures we used α = 10−5.

half plane closure implies that the summation involves the pole p = 3 or the
poles p = 1, 2, respectively. The second term in (20) is the contribution of the
branch-cuts I±

b of ζ extending, respectively, along the real ξ-axis segments
ξ ∈ [1,∞) and ξ ∈ (−∞,−1] (wiggly lines in Fig. 3). In (21), the branch-
cut integrals have been neglected since they correspond to the evanescent
spectrum. Finally, we note that ∂t can be calculated in a closed-form by
noting from (19) that ∂tξ(t) = {τ ′[ξ(t)]}−1.

The result in (21) expresses the field everywhere as an implicit function
of space and time. As noted in the Introduction, wavefront approximations
near the rays arrival times, expressed explicitly in terms of the space-time
coordinates, have been derived in [8].
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Figure 4: Trajectories of the poles ξ(p)(t), p = 1, 2, 3 of (19) in the complex
ξ plane for observation points near point A of Fig. 2(a) that resides on the
caustic. The figure zooms on the spectral zone near the stationary points ξ1,2
of Fig. 3 (square tags) and the trajectories are marked by the same numbers
and tags as in Fig. 3. Pulse length parameter: cT/β = 10−6. (a) Observation
point on the lit side of the caustic; (b) on the caustic; (c) on the shadow side.
Specifically in this figure, the point in (a) is displaced horizontally from A
by Δx = −2.5 10−3β and the point in (c) is displaced by Δx = 2.3 10−4β.
On the caustic, the two stationary points coalesce to a 2nd order stationary
point ξc and both rays r = 1, 2 arrive at t = tc.

3.4 Spectral properties of the STT integral

We start with the properties of τ(ξ), referring to Fig. 3 which depicts
the ξ-plane for a given r on the lit side of the caustic (specifically, near
point A of Fig. 2(a) that resides on the caustic). τ(ξ) has three stationary
points, denoted by ξr, r = 1, 2, 3, shown in Fig. 3 as square tags. ξ1 = 0.208
and ξ2 = 0.104 correspond to rays 1 and 2 in Fig. 1, where ray 1 has not
touched the caustic yet while ray 2 has touched it. The aperture exit points
of these rays are x′1 = −0.043β and x′2 = −0.011β and the arrival times are
t1 = 0.3007β/c and t2 = 0.3009β/c.

The stationary point ξ3 = 0.951 corresponds to a ray that emerges from a
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very remote point x′3 = −0.9β in the aperture and propagates almost parallel
to the aperture(ξ3 � 1), reaching r at a later time t3 = 0.39β/c (note that
t1 ≈ t2 but t3 − t1,2 ≈ 0.09β/c � T where T is typically ∼ 10−6β/c). For
clarity, this ray is suppressed in Fig. 1 but it is shown in Fig. 2 where one
may see that, unlike rays 1 and 2, it intersects the caustic and does not
converge onto it. It also has a relatively weak contribution due to the ekαx

′

decay in the aperture (see (1)). This ray is not included in the paraxial
approximation (2).

Equation (19) has 6 roots ξ(p)(t), p = 1, . . . , 6, at any given t. Figure 3
depicts their trajectories in the complex ξ-plane as a function of t at the
point A referred above. The poles may be located either on the URS or the
LRS where they are denoted by solid or dashed trajectories, respectively.
The tags on the trajectories indicate the corresponding values of t. The
poles p = 1, 3 are located always on the URS, while p = 5, 6 are always on
the LRS. At a very early time, the poles p = 2, 4 are located in the LRS
and then cross to the URS at t = ∓tb, tb > 0, respectively, never crossing
to the LRS again. Note that the trajectories in Fig. 3 are calculated for a
wide pulse with cT = 10−2β in order to displace the poles from the real ξ
axis and to clarify their location with respect to the integration contour C.
In practice, however, T is much smaller: in Fig. 4 and henceforth we use
cT = 10−6β.

For t ≈ t1,2 near the pulse arrival time, the poles p = 1, 2, 3 converge to
the stationary points ξ1,2 in the URS. Figure 4 zooms in on this spectral zone
for three observation points: on the lit side of the caustic, on the caustic, and
in the shadow side. Each case is characterized by a different arrangement of
the stationary points and of the poles, as follows from the different spectral
properties of τ(ξ). One should note though that the overall poles-topology
is similar in all three cases, with poles p = 1, 2 being in the lower half of the
URS with respect to C, while pole p = 3 is in the upper half of the URS.
Thus, the field in (21) is described by the two poles p = 1, 2 if one chooses
a lower half plane closure, or by a single pole p = 3 if one chooses an upper
half plane closure. We also note that at a later time t = tb, the pole p = 4
crosses the branch cut and enters the URS near ξ3, never crossing to the
LRS again. However, as mentioned earlier, this contribution is weak and it
is beyond the pertinent time window.

3.5 The AiPB field

In view of the discussion in the preceding paragraph, we have calculate
the field by using an upper half plane closure in (21) so that the field is given
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Figure 5: The waveforms near the caustic: (a,b), (c,d) and (e,f) correspond
to points on the lit side of the caustic, on the caustic at point A, and on
the shadow side, respectively. They are calculated exactly via (21). The
temporal signal is (17) with m = 2 and γ = 0 in (a,c,e) or γ = −π/2 in
(b,d,f). Note that the waveforms for γ = −π/2 are Hilbert transforms of
those for γ = 0. The time axis is centered around tA, the arrival time to
A, and normalized with respect to T . The field is normalized such that
max |u| = 1 on the caustic in (c). Note also the different vertical scales.

by the single pole p = 3 in Figs. 3 and 4, viz.

+
u(r, t) = −∂m

t

Aeiγ

πτ ′
[
ξ(3)(t)

] . (22)
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Figure 5 depicts the field at the 3 observation points considered in Fig. 4,
located near point A in Fig. 2. The temporal signal is given by (17) with
m = 2 and γ = 0 in (a,c,e) or γ = −π/2 in (b,d,f). The field is calculated
exactly via the real part of (22) (the case γ = −π/2 is the same as taking
the imaginary part of (22) for γ = 0, and it is a Hilbert transform of the
case γ = 0).

On the lit side of the caustic (Figs. 5(a,b)) there are two separate peaks
at t1,2, which are obtained when this pole passes near the stationary points
ξ1,2 where τ ′ vanishes so that τ ′

[
ξ(3)(t)

]
in the denominator of (22) is small.

On the caustic (Figs. 5(c,d)), these two peaks coalesce to a stronger peak,
obtained when the pole passes near the second order stationary point ξc in
Fig. 4(b). Finally, on the shadow side of the caustic (Figs. 5(e,f)), the pulse
evanesces, as follows also from the fact that the pole p = 3 in Fig. 4(c) passes
far away from the real ξ axis.

Figure 6 depicts snapshots of the field in the vicinity of points A and B
on the caustic, defined in Fig. 2(a). The snapshots are taken at the arrival
times at each point. The field on the lit side consists of wavefronts 1 and
2 corresponding to ray species r = 1 that converges toward the caustic and
ray species r = 2 that diverges away from it. Species r = 1 originate from
points x′ in the aperture that are further away from its center and therefore
arrive at larger angles with respect to the z-axis. The two species coalesce on
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Figure 6: Snapshots of the field near points A (a) and B (b) on the caustic.
The snapshots are taken at t = tA,B denoting the time of arrival at A and B,
respectively. The axes are centered around point A and B and are normalized
with respect to β. The temporal signal is given by (17) with m = 2, γ = 0,
T = 10−6β/c and α = 10−5. The logarithmic scale retains the sign of the
waveform (see the bar), and is normalized with respect to the maximal value
in (a). ‘Wavefronts 1,2’ corresponding to rays species r = 1, 2, respectively,
coalesce at the caustic with an evanescent contributions on the shadow side.
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the caustic generating the strong peak of the beam that follows the curved
trajectory. The field on the shadow side decays algebraically, as opposed to
the exponential decay in the time-harmonic case. Note also the wavefront
rotation as the pulse progresses along the caustic from point A to B, which is
due to the bending of the caustic and the fact that rays reaching the caustic
at longer ranges arrive at increasingly sharper angles (see Fig. 1).

The resolution of Fig. 6 fails to depict the narrow negative peak of the
wavefronts (see Fig. 5). We therefore depict in Figs. 7 cross sectional cuts of
the snapshot in Fig. 6(a). The cut in Fig. 7(a) passes exactly through point
A, demonstrating the strong peak at the caustic, as opposed to the peaks of
the rays in Fig. 7(b).
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Figure 7: Cross sectional cuts along z =constant lines in Fig. 6(a). (a) Cut
passing exactly through A (z − zA = 0); (b) cut along z − zA = 0.5 10−3β.

Figure 8 explores the effect of the parameter α that controls the exponen-
tial decay of the aperture field (see (1)). Increasing α affects essentially the
r = 1 ray species that arrives first, since this species originates from aper-
ture points x′ that are located further away from the center and are therefore
strongly affected by the exponential decay. Indeed, comparing Figs. 8(a,b)
with Figs. 6(a,b) one observes that the field of ‘wavefront 1’ is weaker and
has a longer pulse length. For the same reason, the field becomes weaker as
it propagates further away from point A to B.

4 Conclusions

In this paper we discussed the Airy Beams (AiB) and the ultra wide band
(UWB) Airy Pulsed Beams (AiPB). We discussed the physical properties of
these wave functions and the mathematical techniques that are involved
in calculating the solutions in the frequency domain (FD) and in the time
domain (TD).
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Figure 8: Snapshots of the field near points A (a) and B (b) on the caustic.
All parameters are the same as in Fig. 6, except for α = 10−3.

We started in Section 2.1 with a ray analysis of the FD solution. The
ray representation provides a cogent physical interpretation to the AiB and
explains its intriguing properties. The ray formulation, when applied judi-
ciously, is more accurate than the paraxial solution of (2), mainly due to the
growing deviation of the paraxial propagation trajectory (3) from the exact
trajectory obtained via ray analysis. In particular, the paraxial theory does
not predict the cusp in Fig. 2(b) beyond which the AiB disperses. The error
of the paraxial solution versus the exact ray solution is studied in [7, Figs. 11
and 12] in the context of the 3D AiB. Note that the error is obtained even
at a relatively short range z ∼ 0.16β.

The formulation of the UWB-AiPB solution is based on a frequency
scaling of the initial aperture field in (1). This scaling, first introduced
in [8], renders the FD AiB solution non-dispersive in the sense that the
ray skeleton of the field is frequency independent. This ensures that all
the frequency components are AiB’s that propagate along the same curved
trajectory, so that the TD wavepacket does not disperse due to the wide
frequency band.

An exact closed-form solution to the AiPB has been derived in Section 3
via the spectral theory of transients (STT). The STT synthesizes the field
as a spectral integral of time dependent plane waves. This integral is then
evaluated in a closed form and the final result in Eq. (21) expresses the field
compactly by tracking the time-dependent spectral poles of the integrand.
Actually, the AiPB is expressed in (21) by the contribution of a single pole.

The properties of the AiPB were explored in Section 3.5 via a detailed
numerical example. It has been shown that the AiPB indeed propagates
along a curved caustic while retaining its field structure. From Fig. 6 one
concludes that the AiPB consists of two propagating wavefronts that coalesce
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on the caustic, generating a strong peak there. The wave mechanism of the
AiPB is explained further in Fig. 8 where one may discern that the first
arriving wavefront is weaker than the second one. This is due to the fact
that this waveform is formed by rays originating from more distant points at
the aperture that are affected more strongly by the attenuation parameter
α. This demonstrates again that the AiB is, in fact, not a beam field in
the sense that it is not described by a local beam dynamics [6]. One also
observes that the STT solution applies uniformly through the caustic, from
the lit side to the shadow.

The emphasis in this paper has been placed on the exact spectral solution
via the STT, which is an extension of the Cagniard–de Hoop (CdH) method.
In the CdH approach, the TD solutions are obtained by manipulating the
FD spectral integrals into a form from which one may infer the TD solutions
‘by inspection’. Specifically, in that approach the integration contour of
the original FD spectral integral are deformed to a CdH contour which is
defined by the solution of (19) (with T →0) with t being a parameter along
the CdH contour that increases monotonically from some finite value, say t0,
to infinity. From the solution of Eq. (19) as a function of t shown in Figs. 3 or
4 one readily observes that it is impossible to find a simple deformation of the
original integration contour C to a path whereon the parameter t increases
monotonically as explained above. In the STT approach, this difficulty is
circumvented by formulating the field as a TD spectral integral and then
evaluating this integral by closing the integration contour C about all the
relevant singularities in the complex-spectrum plane. The present example
demonstrates that the STT is indeed a flexible reformulation of the CdH
method.
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Abstract

An array-structure theory of Maxwell wavefields in affine (3 + 1)-
spacetime is presented. The structure is designed to supersede the
conventional Gibbs vector calculus and Heaviside vectorial Maxwell
equations formulations, deviates from the Einstein view on space-
time as having a metrical structure (with the, non-definite, Lorentz
metric), and adheres to the Weyl view where spacetime is con-
ceived as being affine in nature. In the theory, the electric field
and source quantities are introduced as one-dimensional arrays
and the magnetic field and source quantities as antisymmetrical
two-dimensional arrays. Time-convolution and time-correlation
field/source reciprocity are discussed, and expressions for the wave-
field radiated by sources in an unbounded, homogeneous, isotropic,
lossless embedding are derived. These expressions clearly exhibit
their structure as convolutions in spacetime. The bookkeeping of
the array structure smoothly fits the input requirements of com-
putational software packages. An interesting result of fundamen-
tal physical importance is that the ’magnetic charge’ appears as
a completely antisymmetrical three-dimensional array rather than
as a number (as in the Dirac quantum theory of the magnetic
monopole). The generalization of the array structure to affine
(N + 1)-spacetime with N > 3 is straightforward and is conjec-
tured to serve a purpose in theoretical cosmology. No particu-
lar ’orientation’ of the observer’s spatial reference frame (like the
’right-handedness’ in conventional vector calculus) is required.
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1 Introduction

Wave phenomena in macroscopic, classical physics have a number of
properties in common that can serve as the basis for constructing the math-
ematical framework that quantitatively describes their physical behavior in
spacetime. In constructing this framework, the views developed by Ein-
stein [1] and Weyl [2] serve as the basic axioms. For the intended structure
to be acceptable, it should, as a minimum requirement, encompass the spe-
cial theory of relativity (that interrelates the values of the wavefield and
source quantities as they are observed by two observers that are in uniform,
rectilinear, relative motion in an unbounded, unstructured background uni-
verse (’vacuum’) [3] in contrast to which the material world presents itself
(Lorentz’s theory of electrons [4])). The pertaining basic properties are listed
below. For generality, they are expressed in affine (N+1)-spacetime RN×R,
where the spatial constituent RN is an N -dimensional Euclidean space pro-
vided with a reference frame that is based on the unit of length handled
by the observer, and used to specify the position of observation, and the
time constituent R is a one-dimensional Euclidean space that is based on
the unit of time handled by the observer and used to specify the instant of
observation.

(1) The physical information in the wave is carried by its two intensive
field quantities and its two extensive field quantities. The intensive
field quantities together compose the area density of power flow in
the wave. The two extensive field quantities together compose the
wave’s volume density of field momentum. In Maxwell fields, the in-
tensive field quantities are denoted as field strengths, the extensive field
quantities as flux densities. The source distributions that generate the
wavefield are introduced as volume densities of electric and magnetic
current. As shown in [3], the framework provides the tools for an
axiomatic approach to special relativity in (N + 1)-spacetime.

(2) In a sourcefree subdomain of spacetime, i.e., a subdomain where the
wave motion is left to itself, the spatial rates of change of the two in-
tensive field quantities are counterbalanced by the time rates of change
of their dual extensive counterparts. In these equations, the action of
sources is incorporated through the introduction, in their right-hand
sides, of source terms of bounded support in spacetime whose structure
is compatible with the structure of the pertaining left-hand sides.

(3) Following Einstein [1] and Weyl [2], the field and source quantities are
quantitatively specified through p-dimensional (p = 0, 1, 2, . . .) arrays
of arraylength N (the dimension of the spatial constituent of affine
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spacetime), containing Np elements. The basic one-dimensional array
is the one that specifies the position of the observer as a function of
time.

For the identification of the elements of an array, the subscript notation
is used. Lower-case Latin subscripts, with range 1, 2, . . . , N , are used
for this purpose. The Einstein summation convention is employed to
denote the summing over repeated subscripts in a term in an expres-
sion. The two-dimensional unit array is δm,n with δm,n = 0 for m 	= n
and δm,n = 1 for m = n. Partial differentiation with respect to xm is
denoted by the one-dimensional array ∂m; ∂t is a reserved symbol for
differentiation with respect to time (Table 1).

Table 1: Observer in (N + 1)-spacetime.

Position x = xm = {x1, . . . , xN} ∈ R
N

Distance |x| = (x21 + · · ·+ x2N )1/2 � 0

Time t ∈ R

Subscript notation, summation convention

|x| = (xmxm)1/2 = (
∑N

m=1 xmxm)1/2 � 0

δm,nxn = xm, δm,nδn,p = δm,p, δm,m = N

Spatial differentiation

∂m = ∂/∂xm

Temporal differentiation

∂t = ∂/∂t (reserved)

In the present overview, material from the author’s basic, open-access
publication [5] has been incorporated. Four-dimensional unit arrays that
show up in the theory of elastic waves in solids have been introduced, and
their properties discussed, in [6].

The material is organized as indicated below.

• The observer in spacetime, array structure of wavefield and source
quantities, subscript notation and summation convention (Section 1)

• The Maxwell wavefield equations (Section 2)

• The electromagnetic constitutive relations (Section 3)

• Interface boundary conditions (Section 4)
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• Radiation from sources in an unbounded, homogeneous, isotropic
medium (Section 5)

• Time-convolution field/source reciprocity (Section 6)

• Time-correlation field/source reciprocity (Section 6)

• Conclusion

2 The Maxwell wavefield equations

In Maxwell wavefield theory, the electric field and source quantities are
introduced as one-dimensional arrays, the magnetic field and source quan-
tities as antisymmetric two-dimensional arrays. The resulting area density
of power flow and volume density of wave momentum are one-dimensional
arrays. The relevant symbols are given in Table 2.

Table 2: Field and source quantities.

Er : electric field strength
Dk : electric flux density
Jk : volume source density of

electric current

[Hp,q]
− = −[Hq,p]

− : magnetic field strength
[Bi,j]

− = −[Bj,i]
− : magnetic flux density

[Ki,j]
− = −[Kj,i]

− : volume source density of
magnetic current

Sm = [Hm,k]
−Ek : area density of power flow

Gi = [Bi,j]
−Dj : volume density of

electromagnetic momentum

For the antisymmetric part of a two-dimensional array, the notation

[Hp,q]
− def

= (Hp,q −Hq,p)/2 = −[Hq,p]
− is used.

The wavefield equations relate the time rate of change of an extensive
field quantity to the spatial rate of change of its ’dual’ intensive field counter-
part, thus enabling the existence of solutions with a wavelike character. The
excitation of such solutions is accommodated in accordance with the (Ein-
stein) requirement that, in a field equation, all terms should be arrays of
equal dimensions and array lengths. For the electromagnetic field equations
this results into the (Maxwell) field equations (Table 3).
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Table 3: Maxwell field equations.

Maxwell field equations Operation

∂m[Hm,k]
− + ∂tDk = −Jk ∂k ⇒⇓[1]

[∂iEj]
− + ∂t[Bi,j]

− = −[Ki,j]
− ∂k + cyclic ⇒⇓[2]

[∂iEj ]
− = (∂iEj − ∂jEi)/2

Field/source compatibility relations

∂t∂kDk = −∂kJk
[1]

∂t[∂k[Bi,j ]
−]� = −[∂k[Ki,j ]

−]� [2]

[∂k[Bi,j ]
−]� = ∂k[Bi,j]

− + ∂i[Bj,k]
−+

∂j[Bk,i]
− (i 	= j 	= k)

∂m[Hm,k]
− + ∂tDk = −Jk (1)

[∂iEj ]
− + ∂t[Bi,j]

− = −[Ki,j]
− (2)

in which
[∂iEj]

− = (∂iEj − ∂jEi)/2 = −[∂jEi]
−. (3)

Operating on (1) with ∂k and noting that ∂k∂m[Hm,k]
− = 0, we obtain the

electric field/source compatibility relation

∂t∂kDk = −∂kJk. (4)

Operating on (2) with ∂k where k 	= i 	= j, cyclically permuting the sub-
scripts, and adding the results, we obtain the magnetic field/source compat-
ibility relation

∂t[∂k[Bi,j ]
−]� = −[∂k[Ki,j ]

−]� (5)

where

[∂k[Bi,j ]
−]� def

= ∂k[Bi,j]
− + ∂i[Bj,k]

− + ∂j [Bk,i]
− (i 	= j 	= k) (6)

(see Table 3). Evidently, the condition i 	= j 	= k can only be met if N � 3,
which implies that N = 3 is the minimum number of spatial dimensions for
which a field structure of the Maxwell type can exist!

In adherence to the physical concept that the volume densities of current
are associated with the (collective) motion of charged particles in a flow in
which the conservation of particles holds, [7, Section 19.4] the volume density
of electric charge is introduced as

ρ
def
= −∂−1

t ∂kJk (7)
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Table 4: Volume density of charge and conservation laws.

Volume density of charge Conservation law

Electric ρ
def
= −∂−1

t ∂kJk ∂kJk + ∂tρ = 0

Magnetic σi,j,k
def
= −∂−1

t [∂i[Kj,k]
−]� [∂i[Kj,k]

−]� + ∂tσi,j,k = 0

∂−1
t = time integration

where ∂−1
t denotes integration with respect to time from the instant of onset

of the sources onward. Equation (7) entails the continuity equation of electric
charge

∂kJk + ∂tρ = 0. (8)

Similarly, the volume density of magnetic charge is introduced as

σi,j,k
def
= −∂−1

t [∂i[Kj,k]
−]� (9)

which entails the continuity equation of magnetic charge

[∂i[Kj,k]
−]� + ∂tσi,j,k = 0. (10)

(see Table 4). From the procedure, it follows that the volume density of
electric charge is a zero-dimensional array, i.e., a single number, while the
volume density of magnetic charge is a cyclic symmetrical three-dimensional
array. (Since for N = 3 the latter array involves only a single number, the
quantity is commonly mistaken to be a scalar charge density.) The array
character of the magnetic charge has implications for the Dirac theory of the
magnetic ’monopole’ [8].

Evidently, the number of unknowns in the field equations is, so far, twice
the number of equations. As a consequence, the fundamental physical con-
dition of the uniqueness of the solution to the initial-value problems is not
yet met. This condition requires that, given the physical state of a system
at some instant t0, its time evolution into t > t0 should, in a unique man-
ner, follow from the pertaining field equations. To meet this condition, the
field equations developed thus far have to be supplemented with the consti-
tutive relations that characterize the medium in which the field is present.
Standardly, these constitutive relations express the values of the extensive
field quantities in terms of the values of the intensive field quantities. For
the electromagnetic field, the relevant general necessary and sufficient con-
ditions are, for the most general case, not known. Only sufficient conditions
(for a large class of media met in practice) are well-established. These are
discussed in the next section.
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3 The electromagnetic constitutive relations

In this section, the electromagnetic constitutive relations for the class
of linear, time-invariant, passive, causally and locally reacting media are
presented (see Table 5). For this class of media, the uniqueness of the initial-
value problem can be proved [9, 10]. Full inhomogeneity, anisotropy and
(Boltzmann) relaxation losses [11] are included.

In general, the medium’s response consists of an instantaneous part and
a time-delayed part (relaxation) [11]. In the Lorentz theory of electrons [4],
the instantaneous part of the response is associated with vacuum, while the
relaxation is representative for the presence of matter in the background
vacuum.

Classic atomic models for the relaxation functions, based on the Lorentz

theory of electrons, can be found in [7, Chapter 19]. With
(t)∗ denoting time

Table 5: Electromagnetic constitutive relations.

Linear | Time-invariant | Locally reacting media

Dk = εk,r
(t)∗ Er εk,r(x, t) =

electric permittivity

[Bi,j ]
− = μ−

i,j,p,q

(t)∗ [Hp,q]
− μ−

i,j,p,q(x, t) =

magnetic permeability
(t)∗= time convolution

Causality

{εk,r, μ−
i,j,p,q}(x, t) = 0 for t < 0

Special media

Homogeneous

{εk,r, μ−
i,j,p,q}(x, t) = {εk,r, μ−

i,j,p,q}(t)
Instantaneously reacting

{εk,r, μ−
i,j,p,q}(x, t) = {εk,r, μ−

i,j,p,q}(x)δ(t)
Isotropic

εk,r(x, t) = ε(x, t)δk,r Dk = ε
(t)∗ Ek

μ−
i,j,p,q(x, t) = μ−(x, t)δi,pδj,q [Bi,j]

− = μ− (t)∗ [Hi,j]
−

Vacuum: c0 = 299792458 m/s

ε(x, t) = ε0 δ(t) ε0 = (1/c20 μ0) F/m

μ−(x, t) = 2μ0 δ(t) μ0 = 4π·10−7 H/m
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convolution, the pertaining relations are (see Table 5)

Dk(x, t) = εk,r(x, t)
(t)∗ Er(x, t) (11)

where
εk,r(x, t) = electric permittivity (12)

and

[Bi,j ]
−(x, t) = μ−

i,j,p,q(x, t)
(t)∗ [Hp,q]

−(x, t) (13)

where
μ−
i,j,p,q(x, t) = magnetic permeability. (14)

We have: for homogeneous media {εk,r, μ−
i,j,p,q}(x, t) = {εk,r, μ−

i,j,p,q}(t); for
instantaneously reacting media {εk,r, μ−

i,j,p,q}(x, t) = {εk,r, μ−
i,j,p,q}(x)δ(t); for

isotropic media εk,r(x, t) = ε(x, t)δk,r and μ−
i,j,p,q(x, t) = μ−(x, t)δi,pδj,q,

which entails Dk = ε
(t)∗ Ek and [Bi,j]

− = μ− (t)∗ [Hi,j]
−, respectively. The

vacuum values are μ−(x, t) = 2μ0 δ(t), with μ0 = 4π·10−7 H/m and ε(x, t) =
ε0 δ(t) with ε0 = (1/c20 μ0) F/m and c0 = 299792458 m/s.

3.1 Causality and the time Laplace transformation

The properties associated with the causality of the medium’s response
are most adequately handled via the time Laplace transformation

{ε̂k,r, μ̂−
i,j,p,q}(x, s)

=

∫ ∞

t=0
exp(−st){εk,r, μ−

i,j,p,q}(x, t)dt for s ∈ C,Re(s) > 0. (15)

The transforms in the left-hand side are analytic in the right-half {s ∈
C,Re(s) > 0} of the complex s-plane (Fig. 1).

Their limiting values on the imaginary axes of the s-plane
yield the spectral behavior of the medium’s response. The diagram in which
20 log10[|{ε̂k,r, μ̂−

i,j,p,q}(x, 2πjf)|], where f is the frequency, is plotted against
log10(f) is denoted as the spectral diagram or Bode diagram [12]. For mod-
eling purposes, the Debije and Lorentz relaxation functions (Fig. 2) are in
use to describe a variety of phenomena.

3.2 Uniqueness of the initial-value problem

There seems not to be a time-domain uniqueness proof of the initial-value
(time-evolution) problem for media that show an arbitrary relaxation behav-
ior. The known proof goes via the time Laplace transformed field equations
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Figure 1: Domain of analyticity and Lerch sequence in the complex time
Laplace transform plane.
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Figure 2: Debije and Lorentz relaxation functions.

and constitutive relations [10] through their properties at the sequence of
equidistant values of the transform parameter s (Fig. 1)

L = {s ∈ R; s = s0 + nh, s0, h > 0, n = 0, 1, 2, . . . } (Lerch sequence) (16)

on the positive real s-axis. The corresponding uniqueness in the time domain
then follows from Lerch’s theorem [13, p. 63].

Sufficient conditions for the uniqueness of the initial-value (time-evolu-
tion) problem are (the proof runs parallel to the one presented in [10])
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Σ

νm

Figure 3: Passive interface between two media with different constitutive
parameters.

Êk ε̂k,r Êr > 0 for s ∈ L, and [Ĥi,j]
− μ̂−

i,j,p,q [Ĥp,q]
− > 0 for s ∈ L (17)

and any nonzero field values. For radiation problems in unbounded domains,
a restriction occurs in that outside some sphere of finite radius the medium
should be homogeneous and isotropic.

4 Interface boundary conditions

At the passive interface between two media across which the constitutive
parameters jump by finite amounts, also the field components show jump
discontinuities. Certain components, however, remain continuous. The per-
taining continuity conditions follow from the field equations upon decompos-
ing the spatial differentiation ∂m into a component normal to the interface
(∂m)⊥ and a component parallel to it (∂m)‖. Let νm denote the unit vector
along the normal to the interface, then (Fig. 3)

(∂m)⊥ = νm(νn∂n) and (∂m)‖ = ∂m − (∂m)⊥ (18)

If, now, the operation of differentiation perpendicular to the interface would
act on a field component that jumps across the interface, this would lead to a
Dirac delta distribution operative at the interface and this would violate the
assumed physical passivity of the interface. Hence, (∂m)⊥ can only act at
field components that are continuous across the interface. This consideration
leads to the interface boundary conditions (see Table 6)

νm[Hm,k]
−|+− = 0 (19)

[νiEj ]
−|+− = 0. (20)
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Note that (20) implies νi[νiEj ]
−|+− = 0 and, hence, [Ej − (νiEi)νj ]|+− = 0 or

(Ej)‖|+− = 0.

Table 6: (Passive) interface boundary conditions.

νm[Hm,k]
−|+− = 0 [νiEj ]

−|+− = 0

Note: [νiEj]
−|+− = 0 ⇒ νi[νiEj ]

−|+− = 0 ⇒
[Ej − (νiEi)νj]|+− = 0 ⇒ (Ej)‖|+− = 0

5 Radiation from sources in an unbounded homo-

geneous, isotropic, lossless medium

In this section, the radiation from sources in unbounded R
N , filled with

a homogeneous, isotropic and lossless medium is discussed. It will be shown
that, in this case, only elementary mathematical operations such as spatial
differentiation, temporal differentiation, spatial convolution and temporal
convolution are needed to arrive at explicit expressions for the electric and
magnetic field components. All of these operations are commutable. Another
feature is that the orientation of the spatial reference frame employed (such
as the right-handedness in standard Gibbs vector calculus) will turn out to
be irrelevant. The source quantities Jk and [Ki,j ]

− that excite the field will
be assumed to have the bounded spatial supports DJ ⊂ R

N and DK ⊂
R
N ,respectively. The constitutive coefficients of the medium are ε > 0 and

μ− > 0. The electric field strength Er and the magnetic field strength [Hp,q]
−

then satisfy the Maxwell equations

∂m[Hm,k]
− + ε ∂tEk = −Jk (21)

[∂iEj ]
− + μ− ∂t[Hi,j]

− = −[Ki,j]
− (22)

with the corresponding source/field compatibility relations

ε ∂t ∂kEk = −∂kJk (23)

μ− ∂t[∂k[Hi,j]
−]� = −[∂k[Ki,j ]

−]� (i 	= j 	= k). (24)

Note that (24) implies that N � 3.

Elimination of [Hi,j]
− from (21) and (22) and use of the compatibility

relation (23) lead to the electric-field wave equation

(∂m∂m)Ek − c−2∂2
tEk = −Qk (25)
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in which

c = 1/(2μ− ε)1/2 (26)

Qk = −2μ− ∂tJk + (1/ε)∂−1
t ∂k(∂mJm) + 2 ∂m[Km,k]

− (27)

where ∂−1
t denotes time integration from the instant of onset of the sources

onward. Introducing the electric-current potential Ak as the solution of the
wave equation

(∂m∂m)Ak − c−2∂2
tAk = −Jk (28)

and the magnetic current potential [Ψi,j]
− as the solution of the wave equa-

tion
(∂m∂m)[Ψi,j]

− − c−2∂2
t [Ψi,j]

− = −[Ki,j ]
− (29)

and using the property that, for constant ε and μ−, the wave operator
(∂m∂m) − c−2∂2

t and the operations ∂m and ∂t commute, (25)–(29) lead
to

Ek = −2μ− ∂tAk + (1/ε)∂−1
t ∂k∂mAm + 2 ∂m[Ψm,k]

−. (30)

Substituting this result in (22) and using the identity ∂m∂n[∂n[Ψm.k]
−]� = 0,

we arrive at

[Hi,j]
− = −2 ε ∂t[Ψi,j]

− + (1/μ−)∂−1
t ∂m[∂m[Ψi,j]

−]� + 2 [∂iAj ]
−. (31)

Finally, upon introducing the Green’s function

G(x, t) =
δ(t − |x|/c)

4π|x| for x 	= 0 (32)

of the three-dimensional scalar wave equation as the causal solution of

(∂m∂m)G− c−2∂2
tG = −δ(x, t) (33)

where δ(x, t) is the (3 + 1)-spacetime Dirac distribution operative at x = 0
and t = 0, and using the property

{Jk, [Ki,j ]
−}(x, t) = δ(x, t)

(x)∗ (t)∗ {Jk, [Ki,j ]
−}(x, t) (34)

where
(x)∗ denotes spatial convolution and

(t)∗ denotes temporal convolution,
(29) and (30) lead to the representations

{Ak, [Ψi,j ]
−}(x, t) = G(x, t)

(x)∗ (t)∗ {Jk, [Ki,j ]
−}(x, t) (35)

where the convolutions are extended over the spatio-temporal supports of
the pertaining sources.

Equation (35) leads to the well-known retarded potentials

{Ak, [Ψi,j]
−}(x, t) =

∫
DJ,K

{Jk, [Ki,j ]
−}(x′, t− |x− x′|/c)
4π|x− x′| dV (x′). (36)
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5.1 The far-field approximation

The far-field approximation, with respect to the reference center x = 0,
is the leading term in the expansion of the field expressions as |x| → ∞.
With

|x− x′| = |x| − ξmx′m +O(|x|−1) as |x| → ∞ (37)

where
ξm = xm/|x| (38)

is the unit vector in the direction of observation, we obtain

{Ak, [Ψi,j]
−}(x, t) = {A∞

k , [Ψ∞
i,j ]

−}(ξ, t− |x|/c)
4π|x|

[
1 +O(|x|−1)

]
as |x| → ∞

(39)
with

{A∞
k , [Ψ∞

i,j ]
−} =

∫
DJK

{Jk, [Ki,j ]
−}(x′, t+ ξmx′m/c)dV (x′). (40)

Observing that

∂m(·) = −(ξm/c)∂t(·)
[
1 +O(|x|−1)

]
as |x| → ∞ (41)

the far-field approximations for the field strengths are obtained as

{Er, [Hp,q]
−}(x, t)

=
{E∞

r , [H∞
p,q]

−}(ξ, t− |x|/c)
4π|x|

[
1 +O(|x|−1)

]
as |x| → ∞ (42)

in which

E∞
r = −2μ−(δr,k − ξrξk)∂tA

∞
k − 2 (ξm/c)∂t[Ψ

∞
m,r]

− (43)

[H∞
i,j ]

− = −2 ε (∂t[Ψ
∞
i,j]

− − ξm[ξm∂t[Ψ
∞
i,j]

−]�)− 2 [(ξi/c)∂tA
∞
j ]−. (44)

Note that the far-field spherical wave amplitudes satisfy the local plane-wave
relations

(−ξm/c)[H∞
m,k]

− + εE∞
k = 0 (45)

[(−ξi/c)E
∞
j ]− + μ− [H∞

i,j ]
− = 0 (46)

for a wave traveling in the direction of ξ.

The field expressions discussed in this section quantify all sorts of wave
propagation from source to receiver, such as the radiation from antennas with
known source distributions. In inverse source and scattering problems they
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form the basis for the extraction of the (unknown) source distributions from
measured wavefield values in some appropriate subdomain of spacetime. The
relevant computational procedures are at the heart of all wavefield imaging
techniques, both in medical diagnostics and in the prospecting for fossil
energy reservoirs in the subsurface of the Earth [14].

6 Time-convolution field/source reciprocity

Reciprocity theorems belong to the category of most fundamental theo-
rems in wave physics. As has been discussed in [15] and [14], various partic-
ular cases can be considered as the basis for such computational techniques
as the domain integral equations method, the boundary integral equations
method, the method of moments, while the concept of introducing the dif-
ferent point-source solutions (Green’s functions) leads to such results as
Huygens’ principle and the Oseen–Ewald extinction theorem (related to the
null-field method) and the source-to-receiver data transfer in imaging and
constitutive parameter inversion procedures.

Reciprocity deals with the interaction of two states, both of which can
exist in a certain domain D ⊂ R

N in space. The two states are associ-
ated with, in general, different excitations and are present in, in general,
media with different constitutive properties, and, hence, exhibit different
field values. The category of configurations for which reciprocity will be
discussed is the same as the one for which uniqueness of the time evolution
can be proved, i.e., for time-invariant configurations with piecewise con-
tinuous, linear, time-invariant, passive, locally and causally reacting media
(Section 3). For such configurations, two types of reciprocity relation can
be distinguished [7, Sections 28.2, 28.3], viz. the one of the time-convolution
type, where the interaction between the two states involves their time con-
volution, and the one of the time-correlation type, where the interaction
between the two states involves their time correlation. In this respect, it is
of importance to observe that the time-convolution one preserves causality,
whereas the time-correlation one has no such property. This distinction plays
an important role in case the theorems are applied to unbounded domains.
The time-correlation one leads, for zero correlation time and applied to two
identical states, to the energy theorem.

The two interacting states are indicated by the superscripts A an B. The
field equations applying to State A are
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∂m[HA
m.k]

− + ∂t(ε
A
k,r

(t)∗ EA
r ) = −JA

k (47)

[∂iE
A
j ]

− + ∂t(μ
−;A
i,j,p,q

(t)∗ [HA
p,q]

−) = −[KA
i,j ]

−. (48)

The field equations applying to State B are

∂m[HB
m.r]

− + ∂t(ε
B
r,k

(t)∗ EB
k ) = −JB

r (49)

[∂pE
B
q ]− + ∂t(μ

−;B
p,q,i,j

(t)∗ [HB
i,j]

−) = −[KB
p,q]

−. (50)

Upon carrying out the operation

(47)
(t)∗ EB

k − (48)
(t)∗ [HB

i,j]
− − (49)

(t)∗ EA
r + (50)

(t)∗ [HA
p,q]

−

we arrive at the local form of the time-convolution reciprocity relation

∂mSAB
m + ∂tU

AB = WAB (51)

in which

SAB
m = [HA

m,k]
− (t)∗ EB

k − [HB
m,r]

− (t)∗ EA
r (52)

represents the transfer of field interaction,

UAB = EB
k

(t)∗ (εAk,r − εBr,k)
(t)∗ EA

r −

[HB
i,j]

− (t)∗ (μ−;A
i,j,p,q − μ−;B

p,q,i,j)
(t)∗ [HA

p,q]
− (53)

yields the contrast-in-media interaction and

WAB = −(EB
k

(t)∗ JA
k − EA

r

(t)∗ JB
r −

[HB
i,j]

− (t)∗ [KA
i,j]

− + [HA
p,q]

− (t)∗ [KB
p,q]

−) (54)

represents the field/source interaction.

Upon integrating (51) over a bounded domain D ⊂ R
N (Fig.4) and

applying Gauss’ theorem, we arrive at the global time convolution reciprocity
relation (for the spatial domain D) as∫

∂D
νmSAB

m dA+ ∂t

∫
D
UABdV =

∫
D
WABdV (55)

in which D is the boundary of D and νm is the unit vector along the outward
normal to ∂D.

The further discussion of corollaries of (55) goes along the same lines
as in [7, Section 28.2], see also [5]. In computational electromagnetics, (55)
provides an important check on the consistency of the pertaining numerical
codes.
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D

∂D

νx

Figure 4: Configuration of application of the global time-convolution reci-
procity relation.

7 Time-correlation field/source reciprocity

The time-correlation reciprocity relation is most easily arrived at by writ-
ing the time correlation of two of the pertaining quantities as their time
convolution, where the second of the two quantities is replaced by its time-
reversed one. Denoting the operation of time reversal by the superscript ∗,
we start from the field equations applying to State A as

∂m[HA
m.k]

− + ∂t(ε
A
k,r

(t)∗ EA
r ) = −JA

k (56)

[∂iE
A
j ]

− + ∂t(μ
−;A
i,j,p,q

(t)∗ [HA
p,q]

−) = −[KA
i,j ]

−. (57)

State B applies to the time-reversed field that satisfies

∂m[HB∗
m.r]

− − ∂t(ε
B∗
r,k

(t)∗ EB∗
k ) = −JB∗

r (58)

[∂pE
B∗
q ]− − ∂t(μ

−;B∗
p,q,i,j

(t)∗ [HB∗
i,j ]

−) = −[KB∗
p,q ]

−. (59)

Upon carrying out the operation

(56)
(t)∗ EB∗

k + (57)
(t)∗ [HB∗

i,j ]
− + (58)

(t)∗ EA
r + (59)

(t)∗ [HA
p,q]

−

we arrive at the local form of the time-convolution reciprocity relation

∂mSAB∗
m + ∂tU

AB∗ = WAB∗ (60)

in which

SAB∗
m = [HA

m,k]
− (t)∗ EB∗

k + [HB∗
m,r]

− (t)∗ EA
r (61)
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represents the transfer of field interaction,

UAB∗=EB∗
k

(t)∗ (εAk,r − εB∗
r,k)

(t)∗ EA
r +

[HB∗
i,j ]

− (t)∗ (μ−;A
i,j,p,q − μ−;B∗

p,q,i,j)
(t)∗ [HA

p,q]
− (62)

yields the contrast-in-media interaction and

WAB∗=−(EB∗
k

(t)∗ JA
k + EA

r

(t)∗ JB∗
r +

[HB∗
i,j ]

− (t)∗ [KA
i,j ]

− + [HA
p,q]

− (t)∗ [K∗
p,qB]−) (63)

represents the field/source interaction.

Upon integrating (60) over a bounded domain D ⊂ R
N (Fig. 5) and

applying Gauss’ theorem, we arrive at the global time-correlation reciprocity
relation (for the spatial domain D) as∫

∂D
νmSAB∗

m dA+ ∂t

∫
D
UAB∗dV =

∫
D
WAB∗dV (64)

in which D is the boundary of D and νm is the unit vector along the outward
normal to ∂D.

D

∂D

νx

Figure 5: Configuration of application of the global time-correlation reci-
procity relation.

The further discussion of corollaries of (64) goes along the same lines as
in [7, Section 28]. In computational electromagnetics, (64), too, provides an
important check on the consistency of the pertaining numerical codes.

The field/source reciprocity relation discussed in this section plays, in
particular, a role in inverse source and scattering problems as they turn up
in wavefield imaging techniques, employed in medical diagnostics and the
prospecting for, and evaluation of, fossil energy reservoirs in the subsurface
of the Earth [14,16].
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8 Conclusion

A time-domain array-structure approach to electromagnetic field theory
is shown to lead to considerable simplifications in the presentation over the
traditional one. Through the structure, the standard Gibbs vector calculus
and the Heaviside vector form of the Maxwell field equations prove to be a
completely superfluous vehicle and even the right-handedness of the spatial
coordinate systems employed, turns out to be not a necessity. Only ele-
mentary mathematical operations are needed to formulate the theory, which
enables its generalization to (N +1)-spacetime [3]. The structure introduces
magnetic currents and their associated magnetic charges in a manner that
deviates from what is standard, with the particular outcome that the mag-
netic charge is not a scalar (as it is treated in Dirac’s theory), but a cyclically
symmetric three-dimensional array. In its turn, this has consequences for
string theory in quantum electrodynamics and theoretical cosmology [17].
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Abstract

In this paper, we propose a frequency independent approach, the
numerical steepest descent path method, for computing the physi-
cal optics scattered electromagnetic field on the quadratic parabolic
and saddle surfaces. Due to the highly oscillatory nature of the
physical optics integral in the high frequency regime, the proposed
method relies on deforming the integration path of the integral into
the numerical steepest descent path on the complex plane. Fur-
thermore, critical-point contributions which contain the stationary
phase point, boundary resonance points, and vertex points, are
comprehensively studied in terms of the numerical steepest descent
path method. To illustrate the efficiency of the proposed method,
some extensive numerical results for the physical optics integral
defined on arbitrary lines, triangles and polygonal domains are
demonstrated. Finally, numerical results on these quadratic sur-
faces illustrate that the proposed numerical steepest descent path
method is frequency independent in computational cost and error
controllable in accuracy.

1 Introduction

In electromagnetics (EM), when the product of the external wave fre-
quency k and the size of the considered object L, i.e., kL ranges from tens
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to thousands, the analysis of the scattered EM field belongs to the high
frequency regime problem. In this case, the classical physical optics (PO)
current approximation [1, 2], has been accepted as an efficient way to cap-
ture the scattered EM field. Given the incident magnetic field H(i)(r), the
induced PO current on the surface of the considered object ∂Ω ⊂ R

3 is
represented by

JPO(r) =

{
n̂(r)×H(i)(r), r ∈ ∂Ω1

0, r ∈ ∂Ω2
(1)

with ∂Ω = ∂Ω1
⋃
∂Ω2, ∂Ω1 and ∂Ω2 are the lit and shadow regions of ∂Ω,

respectively. The resultant PO scattered electric field E(s)(r) is

E(s)(r) = iωμ

∫
∂Ω

Ḡ(r, r′) · JPO(r
′) dS(r′) (2)

where Ḡ(r, r′) =
(
Ī + ∇∇

k2

) exp
(
ik|r−r′|

)

4π|r−r′| is the dyadic Green’s function [3]

for the electric field in an unbounded medium. Moreover, when kL is large
enough, E(s)(r) in (2) can be represented as three surface integrals [4]

I(r) =

∫
∂Ω

s(r, r′) exp
[
ikv(r′)

]
dS(r′). (3)

They are called the surface PO integrals. From the mathematical point of
view, the PO integrand contains the slowly varying amplitude term s(r, r′),
and the exponential of the phase function term exp [ikv(r′)] giving the highly
oscillatory behavior. It is quite changeling to efficiently calculate the PO
integral in the high frequency regime.

In computational electromagnetic (CEM) community, the traditional
method of moment method (MOM) [6] by Harrington via surface inte-
gral equation has a workload that grows dramatically with the working
frequency as O

[
(kL)4

]
. The efficient multi level fast multipole algorithm

(MLFMA) developed by Chew [7] makes the computational effort reduce
to O

[
(kL)2 log(kL)

]
. However, in the high frequency regime, the computa-

tional effort is still too high to afford. In contrast to these full wave methods
like MOM and MLFMA, the PO approximation in (1) has been adopted as
an efficient way to capture the scattered field from the large scale object [2,8].
The traditional high frequency asymptotic (HFA) approach [9–11], can pro-
vide the calculation of the PO scattered field with frequency independent
workload. By the HFA method, the PO integrand is approximated by sev-
eral leading terms. However, the generated PO results lose accuracy due
to that kind of approximation, especially when kL is not extremely large
but lies in the high frequency regime. The numerical steepest descent path
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(NSDP) approach [13–16], provides an efficient way to evaluate the highly
oscillatory PO integral. On invoking the NSDP method, the original PO real
integration path is deformed into the complex NSDPs on the complex plane.
In this manner, the PO integrands decay exponentially on the complex NS-
DPs, and it can be integrated with workload independent of frequency. In
contrast to the HFA method, the only approximation done is the numerical
integration of the exponential decay PO integrand. Hence, the proposed
NSDP method improves the PO scattered field accuracy.

2 PO surface integral formulation

When a perfect conducting object is excited by an external source, the
electromagnetic (EM) scattered fields can be expressed by the Stratton-Chu
integral formulas [3]. For the observation point far away from the considered
object, the far scattered electric field is expressed as

Es(r) ≈ − ikZ0 exp(ikr)

4πr

r̂ × r̂ ×
∫
∂Ω

[
n̂(r′)×H(r′)

]
exp

(−ikr̂ · r′) dS(r′) (4)

where ∂Ω is the boundary of the object, k is the wave number outside Ω,
ω is the angular frequency, r is the observation point with the amplitude r
and unit vector r̂, r′ is the surface point on ∂Ω, n̂(r′) is the outward unit
normal vector of ∂Ω, Z0 is the free space intrinsic impedance constant. EM
fields are time harmonic with the time dependence exp(−iωt). For notation
simplification, in the following, we still use ∂Ω to represent the lit region
of the considered object. H(i)(r′) is the incident magnetic field on ∂Ω. In
particular, we choose the plane incident wave

E(i)(r) = E
(i)
0 exp

(
ikr̂(i) · r

)
(5)

H(i)(r) =
r̂(i) ×E

(i)
0

Z0
exp

(
ikr̂(i) · r

)
. (6)

Then, after substituting (1), (5) and (6) into (4), the far scattered electric
field can be represented by a surface integral

Es(r) ≈
∫
∂Ω

sbi(r
′) exp

[
ikvbi(r

′)
]
dS(r′) (7)
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with

sbi(r
′) = − ik exp(ikr)

2πr
r̂ × r̂ ×

[
n̂(r′)× r̂(i) ×E

(i)
0

]
(8)

vbi(r
′) =

(
r̂(i) − r̂

)
· r′. (9)

The equation above is the bistatic scattered electric field under the PO

approximation, which is called the PO integral. E
(i)
0 in (5) and (6) is the

incident electric polarization wave vector. In (8) and (9), sbi(r
′) is the vector

amplitude function which is usually slowly varying when the surface of the
object is smooth. The exponential of the phase function term, exp [ikvbi(r

′)],
will become highly oscillatory as the working frequency k increases.

In particular, for the monostatic case with r̂ = −r̂(i), the PO surface
integral in (7) can be represented as

Es(r) ≈ E
(i)
0 Ĩmono, (10)

with

Ĩmono =

∫
∂Ω

smono(r
′) exp

[
ikvmono(r

′)
]
dS(r′), (11)

smono(r
′) = − ik exp(ikr)

2πr
r̂(i) · n̂(r′) (12)

vmono(r
′) = 2r̂(i) · r′. (13)

Comparing (12) and (13) with (8), the amplitude function now is simplified
into a scalar function smono(r

′). Furthermore, from (7) and (10), Es(r)
under the PO approximation for both the bistatic and monostatic cases
takes the general form

Ĩ =

∫
∂Ω

s(r′) exp
[
ikv(r′)

]
dS(r′). (14)

Here, the amplitude and phase terms are denoted as s(r′) and v(r′), respec-
tively.

3 The quadratic polynomial approximation of the

amplitude and phase functions

We assume that the surface of the object ∂Ω is governed by equation
z = f(x, y), and its projection onto the x− y plane is ∂Ωxy. Then we use M
triangular patches to discretize the domain ∂Ωxy, that is, �1, �2, · · · , �M .
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To capture the stationary phase and resonance points of the PO integrand
in (3), we approximate the amplitude and phase functions by the second
order polynomials on these triangular patches. Hence, the PO integral Ĩ in
(3) can be expressed as

Ĩ =

∫
∂Ωxy

s̃(x, y) exp [ikṽ(x, y)] t(x, y) dxdy

=
M∑
n=1

∫
	n

d̃(x, y) exp [ikṽ(x, y)] dxdy �
M∑
n=1

Ĩn, (15)

Furthermore, after some affine transformations, the quadratic phase func-
tion ṽn(x, y) in each summation integral term in (15) has the simplified
canonical form. In this manner, each summation integral term in (15) can
be reformulated as

In =

∫
	′

n

p̃n(x
′, y′) exp

{
ik
[±(x′)2 ± (y′)2

]}
dx′dy′ (16)

where

p̃n(x
′, y′) = d̃n[x(x

′, y′), y(x′, y′)] exp
(
ikG̃n|Qn|

)
(17)

is also a second order polynomial in the x′ − y′ coordinate system, and

Qn =
[

∂(x,y)
∂(x′,y′)

]
(	n→	′

n)
is the Jacobi coordinate transform matrix between

two coordinate systems x − y and x′ − y′. The above canonical expression
(16) is valid for both monostatic and bistatic cases.

Due to the highly oscillatory behavior of the canonical form PO integral
In in (16), if one evaluates it accurately by the direct numerical scheme, such
as the adaptive Simpson’s rule, the number of discretized triangle meshes in
(15) shall increase as M = M(k) ∼ O(k2). In the following, we will propose
a NSDP method to k-independently evaluate the canonical PO integral In
in (16).

4 The numerical steepest descent path method for
the PO scattered field

We assume D as the trapezoidal domain, as shown in Fig. 1. We denote
the x−values of vertex points V 1 and V 2 as L1 and L2, respectively. The
governing line equation for edge V 3V 4 is y = ax + b, with a > 0. The
amplitude phase function p(x, y) has the similar form as q(x, y) except with
coefficients αj instead, j = 1, 2, . . . , 6.
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Figure 1: (a) The integration domain is defined on V 1V 2V 3V 4, [L1, L2] ×
[ax + b, 0] for integrand eik(−x2+y2) with a = 0.25, b = −0.5; (b) highly

oscillatory PO type integrand, f(x) = (5 − 3x − x2)eik(−x2+(ax+b)2), with
k = 500.

4.1 Reduction of the PO surface integral into highly oscilla-
tory line integrals

I(a,b) =

∫ L2

L1

∫ 0

ax+b
p(x, y) exp

[
ik
(−x2 + y2

)]
dydx

=

∫ L2

L1

[
J
(0,0)
2 (x)− J

(a,b)
2 (x)

]
exp

(−ikx2
)
dx (18)

with J
(0,0)
2 (x) and J

(a,b)
2 (x) expressed as

J
(0,0)
2 (x) = j1(x) + j

(0,0)
2 (x) (19)

J
(a,b)
2 (x) = j1(x) erfc

[√−ik(ax+ b)
]
+ j

(a,b)
2 (x) exp

(
ik(ax+ b)2

)
(20)

and

j1(x) = −
√
π

2
√−ik

(
α1 + α2x+ α4x

2 − α5

2ik

)
(21)

j
(a,b)
2 (x) =

α3 + α6x+ α5(ax+ b)

2ik
(22)

j
(0,0)
2 (x) =

α3 + α6x

2ik
. (23)

Hence, the original PO integral I(a,b) in (18) can be rewritten as

I(a,b) = I
(0,0)
2 − I

(a,b)
2 (24)
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where

I
(a,b)
2 =

∫ L2

L1

J
(a,b)
2 (x) exp

(−ikx2
)
dx (25)

I
(0,0)
2 =

∫ L2

L1

J
(0,0)
2 (x) exp

(−ikx2
)
dx. (26)

Here, I
(a,b)
2 and I

(0,0)
2 are line integrals associated with edges V 1V 2 and

V 3V 4, respectively.

4.2 Phase behavior of I
(a,b)
2 and its stationary phase point

As a result, the integrand J
(a,b)
2 (x) in (20) has the following asymptotic

behavior

J
(a,b)
2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
j1(x)ν1(x) exp

[
ik(ax+ b)2

]
+j

(a,b)
2 (x) exp

[
ik(ax+ b)2

]
, x ∈ D1,

2j1(x) + j1(x)ν2(x) exp
[
ik(ax+ b)2

]
+j

(a,b)
2 (x) exp

[
ik(ax+ b)2

]
, x ∈ D2

=

{
ς1(x) exp

[
ik(ax+ b)2

]
, x ∈ D1,

2j1(x) + ς2(x) exp
[
ik(ax+ b)2

]
, x ∈ D2

(27)

with ς1(x), ς2(x) denoted as slowly varying functions. D1 and D2 are the
domains separated by the Stokes’ line on the complex plane, with the ex-
pressions

lStokes(x) : Im(x) = −Re(x)− b

a
(28)

D1 := a [Re(x) + Im(x)] + b > 0 (29)

D2 := a [Re(x) + Im(x)] + b < 0. (30)

For the case x ∈ D2 in (27), the first term 2j1(x) comes from the Stokes’
phenomenon of the complementary error function.

After substituting (27) into (25), we get two phase function terms for

I
(a,b)
2 . They are

g1(x) = −x2 + (ax+ b)2 (31)

g2(x) = −x2. (32)

The above equations indicate that the Stokes’ phenomenon of complemen-

tary error function makes the phase behaviors of the PO integrand I
(a,b)
2 be

discontinuous.
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4.3 Numerical steepest descent paths for I
(a,b)
2

Firstly, we consider the first phase function g1(x) of I
(a,b)
2 in (31) and

(32). Physically, there may exist a point xs, at which the phase behavior of
g1(x) is different from others. It is called the stationary phase point (SPP).
SPP corresponds to the point at which the specular reflection occurs in the
high frequency ray physics regime. Mathematically, the SPP xs satisfies the
condition g′1(xs) = 0. As a result, we have the mathematical expression of
xs as

xs =

{
ab

1−a2
, |a| 	= 1

no stationary phase point, |a| = 1
(33)

Now we see the term exp [ikg1(x)] in the PO integrand

exp [ikg1(x)] = exp (ik {Re[g1(x)] + i Im[g1(x)]})
= exp {−k Im[g1(x)] + ikRe[g1(x)]} . (34)

The NSDP method relies on the transformation of the above highly oscilla-
tory functions to exponential decay functions on the complex plane.

To achieve this, for a starting point L∗, we define a complex path function
x = ϕL∗(p) as that in [3], satisfying the following identity

−ϕL∗(p)
2 + [aϕL∗(p) + b]2 = −L2

∗ + (aL∗ + b)2 + ipl, (35)

with l = 1 for integration end points L1 and L2, and l = 2 for the SPP xs.
After substituting L1, L2 and xs into (35), the corresponding NSDPs are

ϕLm(p) =

⎧⎪⎪⎨
⎪⎪⎩

sgn(L′
m)√

a2−1

√
L′
m
2
+ ip+ xs, |a| > 1, p ∈ [0,∞)

sgn(L′
m)√

1−a2

√
L′
m
2 − ip+ xs, |a| < 1, p ∈ [0,∞)

Lm + ip
2ab , |a| = 1, p ∈ [0,∞)

(36)

ϕxs(p) =

⎧⎪⎪⎨
⎪⎪⎩

p
√
i√

|1−a2| + xs, |a| > 1, p ∈ (−∞,∞)

p
√−i√
|1−a2| + xs, |a| > 1, p ∈ (−∞,∞)

no NSDP, |a| = 1, p ∈ (−∞,∞)

(37)

Here,

L′
m =

√
|1− a2|

(
Lm − ab

1− a2

)
=
√

|1− a2|(Lm − xs), m = 1, 2. (38)

In Fig. 2, we demonstrate the diagrams of the NSDPs expressed in (36)
and (37), with cases a > 1 and a = 1. Possible cases of NSDP occur when a
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changes to the negative sign. However, for the brevity of this paper, we skip
those cases here.

Figure 2: Sub-figures (a) and (b): I
(a,b)
2 defined on the integration do-

main [L1, L2] with L1 < xs < L2, and its numerical steepest descent paths

ϕL1(p)
⋃

ϕxs(p)
⋃
ϕL2(p); sub-figures (c) and (d): I

(a,b)
2 defined on the inte-

gration domain [L1, L2] with xs > L2, and its numerical steepest descent
paths ϕL1(p)

⋃
ϕL2(p).

With the above expressions for NSDPs, we give the following main the-
orem in this paper.

Theorem 4.1 (Frequency independent theorem by the NSDP method).

The highly oscillatory integrand of I
(a,b)
2 in (25), (26), i.e., J

(a,b)
2 (x) exp

(−ikx2
)

defined on the real integration domain [L1, L2] can be transformed to that de-
fined on several complex NSDPs on the complex plane, denoted as ϕNSDPs(p),
that takes the formulation

ϕNSDPs(p) =

{
ϕL1(p)

⋃
ϕxs(p)

⋃
ϕL2(p), L1 < xs < L2

ϕL1(p)
⋃

ϕL2(p), L2 < xs
(39)
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with these two cases shown in Fig. 2. Then, I
(a,b)
2 takes the formulation

I
(a,b)
2 =

{
I
(a,b)
2,L1

+ I
(a,b)
2,xs

− I
(a,b)
2,L2

+K2(A)−K2(L1, 0), L1 < xs < L2

I
(a,b)
2,L1

− I
(a,b)
2,L2

+K2(L2, 0)−K2(L1, 0), L2 < xs
. (40)

Here, I
(a,b)
2,L1

, I
(a,b)
2,L2

and I
(a,b)
2,xs

are integrals with exponential decay integrands
defined on ϕL1(p), ϕL2(p) and ϕxs(p), respectively. The complex point A
corresponds to the intersection point in Fig. 2, and K2(x) is the primitive
function of kernel 2j1(x) exp

(−ikx2
)
in (21), with the formula

K2(x) =
( π

2k
α1 +

π

4ik2
α4 − π

4ik2
α5

)
erfc

(√
ik x

)

+

( √
π

2ik
√−ik

α2 +

√
πx

2ik
√−ik

α4

)
exp

(−ikx2
)
. (41)

Furthermore, on invoking the Gauss-Laguerre quadrature rule, the PO in-

tegrand J
(a,b)
2 (x) exp

(−ikx2
)
defined on ϕNSDPs(p) can be integrated with

workload independent of frequency k, as k � 1.

The detailed proof is given in [17].

5 Numerical results

To illustrate the efficiency of the proposed NSDP method, first, we con-

duct some numerical experiments for the PO line integral I
(a,b)
2 . Next, we

Figure 3: (a) PO surface integral I	1 , defined on the triangular patch–Δ1;
(b) the electromagnetic wave impinges on the quadratic saddle surface ∂Ω,
governed by equation z = f(x, y).
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extend the PO surface integral on the triangular patch. Finally, the RCS
values of the PO scattered electric field on the saddle surface are generated
via the proposed NSDP method.

5.1 PO surface integral on the triangular patch

In this subsection, we consider the triangular patch �1, as shown in
Fig. 3. The critical points in �1 contain the SPP Xs, two RSPs Xr,m and
three vertex points V n, m = 2, 3, n = 1, 2, 3.

In contrast to the HFA method, Fig. 4 depicts that the PO results by
the NSDP method can be significantly improved by one to two orders when

k ∈ [10, 100], as expressed by E
(NSDP)
Δ1

(k) and E
(HFA)
Δ1

(k). Meanwhile, the
computational effort for the PO integral by the NSDP method is also O(1).
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Figure 4: (a) The relative errors of the PO results by using the NSDP and

HFA methods relative to the BF method on Δ1, denoted by E
(NSDP)
Δ1

(k) and

E
(HFA)
Δ1

(k); (b) CPU time comparisons by using NSDP and BF methods.

5.2 PO scattered field on the saddle surface

Finally, we apply the NSDP method to analyze the PO scattered field
on the saddle surface in Fig. 3. The incident wave propagates along r̂(i) =[
0.5, 0.5,−√

2/2
]
direction, and the observation point is set along the direc-

tion r̂ =
[√

2/4,
√
6/4,

√
2/2

]
.

Figure 5 gives comparisons of the errors of Es(r) produced by NSDP
and HFA methods relative to the BF method. Compared with the HFA
method, the advantage on improving the scattered electric field accuracy by
the NSDP method is again confirmed in Fig. 5.



52 Reducing computational workload from electrically large quadratic surface

0 100 200 300 400 500
10

14

10
12

10
10

10
8

10
6

10
4

10
2

Frequency k

R
el

at
iv

e 
E

rr
or

 

 
NSDP
HFA

a

0 100 200 300 400 500
0

50

100

150

200

250

Frequency k

C
P

U
 ti

m
e 

(S
ec

on
ds

)

 

 
NSDP
Brute force

b

Figure 5: (a) The relative errors of the bistatic scattered electric field Es(r)
results by using NSDP and HFA methods relative to the BF method on the
saddle surface; (b) comparisons of the CPU time (second unit) for the PO
scattered electric field by using NSDP and BF methods.

On invoking the NSDP method, the various critical-point contributions
to Es(r) are compared in Fig. 6. Also, we see that the SPP point contri-
bution dominates Es(r) when k is large. Again, Fig. 5 demonstrates the
frequency independent computational effort for the scattered electric field.
Finally, we apply the NSDP method to calculate the bistatic RCS values of
Es(r), which are in good agreement with the results generated by the BF
method.

In summary, the proposed NSDP method for calculating the PO scat-
tered field on the quadratic saddle surface is frequency independent and error
controllable.

6 Conclusion

In this paper, we propose the NSDP method to calculate the scattered
field on the quadratic saddle surface in the high frequency regime. The
scattered electric field can be reduced to several highly oscillatory PO sur-
face integrals. By applying the NSDP method, high frequency critical-point
contributions are rigorously expressed on these NSDPs. Finally, extensive
numerical experiments are given to show the efficiency of the NSDP method.
In conclusion, the NSDP method for calculating the electric scattered field on
the quadratic saddle surface is frequency independent and error controllable.
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Figure 6: (a) Critical points contributions to Es(r) in (7) in terms of the
NSDP method; (b) comparisons of the RCS (dBsm unit) values of the PO
scattered electric field on the saddle surface by using NSDP and BF methods.

Acknowledgment

This work was supported in part by the Research Grants Council of
Hong Kong (GRF 711511, 713011, and 712612), HKU Small Project Fund-
ing(201007176196), HKU Seed funding (201102160033), HKU UDF-CSE
grant, and in part by the University Grants Council of Hong Kong (Contract
No. AoE/P-04/08).

Bibliography

[1] H.M. Macdonald, “The effect produced by an obstacle on a train of electric
waves,” Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., no. 212,
pp. 299–337, 1913.

[2] P.Y. Ufimtsev, “New insight into the classical macdonald physical optics ap-
proximation,” IEEE Antennas Propag. Mag., vol. 50, no. 3, pp. 11–20, June
2008.

[3] W.C. Chew, Waves and Fields in Inhomogeneous Media, New York: IEEE
Press, 1995.

[4] J.A. Kong, Electromagnetic Wave Theory, Cambridge, MA: EMW Publishing,
2000.

[5] W.C. Chew, M. S. Tong, and B. Hu, Integral Equations Methods for Electro-
magnetic and Elastic Waves, Morgan and Claypool, 2008.

[6] R. Harrington, Field Computation by Moment Method, New York: Macmillan,
1968.



54 Reducing computational workload from electrically large quadratic surface

[7] J.M. Song, C.C. Lu, and W.C. Chew, “Multilevel fast multipole algorithm for
electromagnetic scattering by large complex objects,” IEEE Trans. Antennas
Propag., vol. 45, no. 10, pp. 1488–1493, Oct. 2009.

[8] A.C. Ludwig, “Computation of radiation patterns involving numerical dou-
ble integration,” IEEE Trans. Antennas Propag., vol. 16, no. 6, pp. 767–769,
Nov. 1968.

[9] S.W. Lee and G.A. Deschamps, “A uniform asymptotic theory of electromag-
netic diffraction by a curved wedge,” IEEE Trans. Antennas Propag., vol. 24,
no. 1, pp. 25–34, Jan. 1976.

[10] G. Carluccio, M. Albani, and P.H. Pathak, “Uniform asymptotic evaluation of
surface integrals with polygonal integration domains in terms of UTD transi-
tion functions,” IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1155–1163,
April, 2010.

[11] R. Wong, Asymptotic Approximations of Integrals, New York: SIAM, 2001.

[12] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Mine-
ola, NY: Dover Publications Inc., 1972.

[13] Y.M. Wu, L. J. Jiang, and W.C. Chew, “An efficient method for comput-
ing highly oscillatory physical optics integral,” Progress In Electromagnetics
Research (PIER) vol. 127, pp. 211–257, April, 2012.

[14] Y.M. Wu, L. J. Jiang, and W.C. Chew, “An efficient method for computing
highly oscillatory physical optics integral,” in Proc. IEEE International Sympo-
sium on Antennas and Propagation and USNC-URSI National Radio Science
Meeting pp. 1–2, Chicago, USA, July, 2012.

[15] Y.M. Wu, L. J. Jiang, W.E. I. Sha, and W.C. Chew, “The numerical steep-
est descent path method for calculating physical optics integrals on smooth
conducting surfaces,” IEEE Trans. Antennas Propag., in revision.

[16] Y.M. Wu, L. J. Jiang, and W.C. Chew, “Computing highly oscillatory physi-
cal optics integral on the polygonal domain by an efficient numerical steepest
descent path method,” J. Comput. Phys., November 24, 2012, [Online]. Avail-
able: dx.doi.org/10.1016/j.jcp.2012.10.052.

[17] Y.M. Wu, W.C. Chew, and L. J. Jiang, “A frequency independent method for
computing high frequency physics optics scattered electromagnetic fields on
saddle surfaces,” SIAM Journal on Scientific Computing, submitted.



Progress in multiscale computational

electromagnetics in time domain

Luis Tobón†,‡, Jiefu Chen§, Junho Lee∗, Mengqing Yuan∗, Bo
Zhao∗ and Qing Huo Liu†

†Department of Electrical and Computer Engineering, Duke University,
Durham, NC 27708, USA, e-mail: luis.tobonllano@duke.edu

‡Department of Electronic Engineering and Computer Science, Pontificia
Universidad Javeriana-Cali, Santiago de Cali 56710, Colombia

§Adv. R&D Center, Weatherford International Ltd., Houston, TX 77060,
USA

∗Wave Computational Technology, Inc. (WCT), Durham, NC 27707, USA

Abstract

Many system-level electromagnetic design problems are multiscale
and very challenging to solve. They remain a significant barrier
to system design optimization for a foreseeable future. Such mul-
tiscale problems often contain three electrical scales, i.e., the fine
scale (geometrical feature size much smaller than a wavelength),
the coarse scale (geometrical feature size greater than a wave-
length), and the intermediate scale between the two extremes. Ex-
isting computational tools are based on single methodologies (such
as finite element method or finite-difference time-domain method),
and are unable to solve large multiscale problems. We will present
our recent progress in solving realistic multiscale system-level EM
design simulation problems in time domain. The discontinuous
Galerkin time domain method is used as the fundamental frame-
work for interfacing multiple scales with finite-element method,
spectral element method, and finite difference method. Numer-
ical results demonstrate significant advantages of our multiscale
method. A more detail discussion of the method is given in [1].
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1 Introduction

Realistic system level electromagnetic problems such as electromagnetic
interference (EMI), electromagnetic compatibility (EMC) ans signal integrity
(SI) are often multiscale. Examples of multiscale problems include small de-
vices under test in a reverberation chamber for EMC/EMI testing, and a
multilayer package-to-chip structure in Fig. 1. Here electrically fine struc-
tures with details much smaller than a typical wavelength (mode stirrers,
devices under testing in the chamber, or on-chip interconnects in the package-
to-chip structure) coexist with electrically coarse structures comparable to
or larger than a typical wavelength (the empty space insider the chamber,
or the package in the multilayer circuit).

Package structure
(mm)

Package interconnects
(100μm)

Solder pads (μm)
On-chip (nm)

Figure 1: Multiscale package-to-chip structure.

Simulating transient multiscale problems can be very challenging for the
conventional finite-difference time-domain (FDTD) method and the finite-
element time-domain (FETD) method. The FDTD method [2, 3] requires
an orthogonal grid. Thus, a high discretization density required to capture
the geometric characteristics of electrically fine structures will lead to a large
number of wasted unknowns in the electrically coarse domains. The subgrid-
ding technique [4] can alleviate this issue of the FDTD method; however,
it will spoil the simple data structure of the standard FDTD scheme and
greatly increase computational complexity. The FETD method [5,6] is more
flexible in geometric modeling. However, this method requires solving ma-
trix equations, either directly or iteratively. A discretized multiscale problem
usually has a large number of unknowns, viz. huge system matrices. It can
be prohibitively expensive to perform operations with huge matrices during
time stepping.

Discontinuous Galerkin time-domain (DGTD) methods [7–17] are
promising in solving multiscale problems. First, for geometric modeling,
DGTD allows for domain decomposition. A multiscale structure can be
divided into several subdomains, and each subdomain can be discretized by
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a specific mesh density based on its geometric characteristics. Based on
the idea of domain decomposition, DGTD is much more flexible than FDTD
and FETD in modeling complex structures because large system matrices are
split into a bunch of smaller matrices. DGTD can easily handle problems
too large to be solved by the conventional FETD method. As for time
integration, DGTD allows for different time stepping schemes to be used in
different subdomains. For example, efficient explicit schemes can be applied
to subdomains with coarser meshes and relatively large CFL numbers, while
unconditionally stable implicit schemes can be employed in subdomains with
dense meshes to overcome CFL restrictions. These flexibilities in both spatial
and temporal discretization make DGTD efficient in multiscale simulations.

Constructing a DGTD system consists of several key steps: (a) decid-
ing on which governing equations the DGTD method will be based on; (b)
choosing element shape and corresponding basis functions for the spatial
discretization of each subdomain; (c) applying numerical fluxes onto inter-
faces to stitch all subdomains together; and (d) selecting a time stepping
scheme based on properties of a discretized system. Each step of the above
procedure has more than one choice. Thus, dozens of DGTD variations have
been proposed with different combinations of implementation schemes. In
this review we provide a discussion of the fundamental issues of each step,
emphasizing the details of one specific scheme based on mixed finite element
discretization and the hybrid implicit-explicit (IMEX) time stepping scheme.

2 The discontinuous Galerkin system for transient
electromagnetic analysis

2.1 Governing equations for time domain electromagnetic
analysis

The transient electromagnetic problems can be governed by different
equations such as first order Maxwell’s equations or a second order wave
equation. Mathematically these governing equations are equivalent, how-
ever, with different discretization schemes they differ greatly in numerical
properties [18].

The second order wave equation uses directly curl-conforming elements
[19–22], which are free of spurious modes and facilitate the imposition of
boundary condition. Despite such advantages, the wave equations have dif-
ficulties in constructing the time-domain perfectly matched layer (PML),
which is believed to be an all-purpose technique to truncate unbounded re-
gions. Moreover, the implementation of numerical fluxes [23–25], a critical
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step in building a DGTD system, is based on both E and H variables.
These limitations make the wave equation with only one discretized field
less suitable for DGTD methods.

To avoid the above difficulties the DGTD systems can be based on first
order Maxwell’s equations with both E and H as field variables

ε
∂E

∂t
+ σE −∇×H = −J s (1)

μ
∂H

∂t
+∇×E = 0 (2)

In the following subsections we will see that it is straightforward to imple-
ment numerical fluxes for this first order system.

2.2 Galerkin’s weak form and numerical fluxes

Denote Φ and Ψ as basis functions for E and H , respectively. With
integration by parts, the Galerkin’s weak forms of Maxwell’s equations are∫

V
Φ ·

(
ε
∂E

∂t
+ σE + J s

)
dV −

∫
V
(∇×Φ) ·H dV

=

∫
S
Φ · (n×H) dS (3)∫

V
Ψ · μ∂H

∂t
dV +

∫
V
(∇×Ψ) ·E dV

= −
∫
S
Ψ · (n×E) dS (4)

where V denotes the volume of a subdomain, which contains one or more
elements, n is the unit normal vector located on surface S and pointing to
the outside of V . The terms on the right hand sides of equations (3) and
(4) are integrals over subdomain interfaces. In DGTD methods they are
evaluated by numerical fluxes.

Choosing different numerical fluxes can lead to different DGTD systems.
One commonly used numerical flux is the Riemann solver [23, 24], which is
a type of upwind numerical flux and is derived from the physical process
of wave propagation and reflection across an interface between two different
media ∫

S
Φ · (n×H) dS =

∫
S
Φ ·

[
n× Z(i)H(i) + Z(j)H(j)

Z(i) + Z(j)

]
dS

+

∫
S
Φ ·

[
n× n× E(i) −E(j)

Z(i) + Z(j)

]
dS (5)
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∫
S
Ψ · (n×E) dS =

∫
S
Ψ ·

[
n× Y (i)E(i) + Y (j)E(j)

Y (i) + Y (j)

]
dS

−
∫
S
Ψ ·

[
n× n× H(i) −H(j)

Y (i) + Y (j)

]
dS (6)

where Z(i) = 1/Y (i) =
√

μ(i)/ε(i) and Z(j) = 1/Y (j) =
√

μ(j)/ε(j) are wave
impedances for the i-th and the j-th subdomains, respectively.

2.3 Discretized system of linear equations

Assuming a multiscale structure is divided into N subdomains, the dis-
cretized system of equations by the DGTD method will be

M (i)
ee

de(i)

dt
= K

(i)
ehh

(i) +C(i)
ee e

(i) + j(i) +

N∑
j=1

(
L(ij)

ee e(j) +L
(ij)
eh h(j)

)
,

i = 1, . . . , N (7)

M
(i)
hh

dh(i)

dt
= K

(i)
hee

(i) +
N∑
j=1

(
L

(ij)
he e(j) +L

(ij)
hh h(j)

)
,

i = 1, . . . , N (8)

where e(i) and h(i) are vectors of the discretized electric and magnetic fields,

M
(i)
ee and M

(i)
hh are the mass matrices, C

(i)
ee is the damping matrix, K

(i)
eh and

K
(i)
he are the stiffness matrices, and j(i) is vector of the discretized excitations

of the i-th subdomain. Matrices L
(ij)
ee , L

(ij)
eh , L

(ij)
he , L

(ij)
hh are obtained from

the interface integrations and can be viewed as the couplings between fields
of the i-th and j-th subdomains. Detailed formulations of these vectors and
matrices are referred to [26].

3 Spatial discretization with different basis func-

tions

3.1 DG-FETD: discontinuous Galerkin finite-element time-
domain method

The discontinuous Galerkin finite-element time-domain (DG-FETD)
method is a very popular DGTD scheme with finite elements employed for
spatial discretization of subdomains. The DG-FETD method can be viewed
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as a combination of discontinuous Galerkin method (DGM) and finite ele-
ment method (FEM) in time domain. All kinds of finite elements, e.g., nodal
or edge elements as basis functions, tetrahedral, prism, or hexahedral ele-
ments as element shapes, have been used in constructing different DG-FETD
schemes [7–15].

3.2 DG-SETD: discontinuous Galerkin spectral-element
time-domain method

Despite its meshing flexibility, the lower order DG-FETD scheme suffers
from a slow convergence rate and a large numerical dispersion. To make
multiscale simulations more efficient, the electrically coarse part can be se-
lected out and discretized by higher order finite elements with a coarser
mesh. The spectral elements are special types of higher order finite ele-
ments with interpolation points chosen based on spectral polynomials, such
as Gauss-Lobatto-Legendre (GLL) polynomials [27, 28]. By doing so the
spectral elements will avoid the Runge phenomenon and lead to diagonal or
block diagonal mass matrices, which are especially favorable to time domain
computations because inversion of such mass matrices becomes trivial.

4 Time stepping schemes

For a DGTD system, time stepping can be performed subdomain by sub-
domain rather than solving a huge matrix system as in FETD schemes. This
advantage of DGTDmethods can save a large amount of memory during time
stepping, and furthermore, it makes parallel computation straightforward for
a DGTD system.

Local time stepping and hybrid implicit-explicit schemes for
multiscale simulations

A discretized multiscale DGTD system usually contains electrically
coarse subdomains with coarse meshes, which have relatively large CFL num-
bers when an explicit time integration scheme is used. Meanwhile the mul-
tiscale system also contains electrically fine subdomains with dense meshes,
whose CFL numbers may be several orders smaller than those of electri-
cally coarse subdomains. Local time stepping methods such as the multirate
Adams-Bashforth scheme [29,30] or hybrid implicit-explicit schemes [31] can
be a good fit for a DGTD system under this circumstance.

Take the hybrid implicit-explicit Runge-Kutta (IMEX-RK) [32] scheme
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as an example, which consists of two parts. The first part is the explicit
Runge-Kutta (ERK) method

0 0 0 . . . . . . 0

c2 aex2,1 0
. . .

. . .
...

c3 aex3,1 aex3,2 0
. . .

...
...

...
...

...
. . . 0

cs aexs,1 aexs,2 . . . aexs,s−1 0

b1 b2 b3 . . . bs

(9)

The second part is for the explicit singly diagonally implicit Runge-Kutta
(ESDIRK) method

0 aim1,1 0 . . . . . . 0

c2 aim2,1 aim2,2 0
. . .

...

c3 aim3,1 aim3,2 aim3,3
. . .

...
...

...
...

...
. . . 0

cs aims,1 aims,2 . . . aims,s−1 aims,s
b1 b2 b3 . . . bs

(10)

Assuming a discretized multiscale problem contains Nex explicit subdo-
mains and Nim implicit subdomains, the time stepping formulation for the
i-th subdomain based on IMEX-RK with s stages is

v
(i)
n+1 = v(i)

n +Δt

s∑
k=1

bku
(i)
k , i = 1, · · · , Nim +Nex (11)

where

M (i)u
(i)
k =

Nim+Nex∑
j=Nim+1

L(ij)

(
v(j)
n +Δt

k−1∑
l=1

aexk,lu
(j)
l

)

+

Nim∑
j=1

L(ij)

(
v(j)
n +Δt

k∑
l=1

aimk,lu
(j)
l

)
+ f (i)(tn + ckΔt) (12)

for explicit subdomains, and

(
M (i) −Δtaimk,kL

(ii)
)
u
(i)
k = f (i) (tn + ckΔt) +L(ii)

(
v(i)
n +Δt

k−1∑
l=1

aimk,lu
(j)
l

)

+

Nim+Nex∑
j=Nim+1

L(ij)

(
v(j)
n +Δt

k−1∑
l=1

aexk,lu
(j)
l

)
(13)
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for implicit subdomains.

The hybrid IMEX scheme does not need temporal interpolation at the
interfaces between explicit and implicit regions. To our understanding, the
hybrid IMEX scheme is very desirable for a DGTD system with well sep-
arated CFL numbers, while the local time stepping scheme may be more
suitable for a DGTD system with CFL numbers spanning continuously from
a very small value to a relatively large one.

5 Conclusions

In this paper we have reviewed some important concepts, formulations,
and implementations of discontinuous Galerkin time domain schemes for
multiscale electromagnetic simulations, in particular, the mixed finite ele-
ment discretization and the hybrid implicit-explicit (IMEX) time stepping
scheme. Numerical examples demonstrate that the proposed method is a
promising time-domain technique for simulating multiscale structures.
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Abstract

The concept of generalized complex inductance for the partial ele-
ment equivalent circuit (PEEC) technique is introduced to model
microstrip radiation problems. Using the semi-analytical Greens
functions for microstrip substrates, the imaginary part of this gen-
eralized complex inductance can be shown to represent a frequency-
dependent resistance containing information about the losses from
spatial radiations (spherical and lateral) and surface waves (cylin-
drical). Hence, different radiation components can be derived sepa-
rately, providing a useful and unique feature for representing high-
speed/high frequency microstrip structures and antennas in the
network domain.

1 Introduction

Although the partial element equivalent circuit (PEEC) technique [1–3]
has been successfully applied for analyzing a wide range of electromagnetic
problems, including electromagnetic compatibility, electromagnetic interfer-
ence, as well as signal integrity for high-speed electronic circuits, its ability
to handle radiation problems has not been considered thoroughly. Recently,
a radiation model for the PEEC technique has been proposed for the free-
space case [4]. This model makes use of the concept of generalized complex
inductance to account for the radiation effect and the corresponding PEEC
model can be used as a starting point to extract essential information on the
radiation characteristics of the structure being investigated. In this work, the
radiation model is extended to the case of modeling microstrip circuits and
antennas. By using the Green’s functions for microstrip substrates, it can
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be shown that the imaginary part of the inductance represents a frequency-
dependent resistance containing contributions from spatial radiation and
surface waves. The resulting equivalent circuits employing this generalized
complex inductance concept require no ‘non-conservative’ capacitors, and
the (quasi-)static condition for the capacitive components is preserved.

2 Theory

2.1 Single-layered microstrip Greens functions

Magnetic vector and electric scalar Greens functions for microstrip struc-
tures are usually expressed in terms of Sommerfeld integral as

G =

∫
G̃ (kρ)H

(2)
0 (kρρ) kρdkρ (1)

where G̃ = G̃xx
A or G̃φ is the corresponding Greens function in the spec-

tral domain, and H
(2)
0 is the Hankel function of the second kind. In order

to compute this integral, a variety of techniques can be used. In general,
for a single-layered microstrip substrate, the two spectral-domain Greens
functions can be decomposed into three parts [5] as

G̃ = G̃0 + G̃SW +
F

j2kz0
. (2)

Notice that k2z0 = k20 − k2ρ. The first two terms in (2) represent, respectively,
the asymptotic (kρ → ∞) and surface-wave components of the Greens func-
tion. The last term F is the ‘leftover’ for which the first two components do
not cover.

In this work, the asymptotic and the ‘leftover’ components are considered
together as they both contribute to radiation into free space. In this sense,
Eq. (2) should be rewritten as

G̃ =

(
G̃0 +

F

j2kz0

)
+ G̃SW = G̃SP + G̃SW (3)

The corresponding spatial domain Greens functions can be obtained through
(1).

2.2 Generalized complex inductance

The ‘non-conservative’ capacitance issue can be overcome by extract-
ing only the (quasi-)static portion of the electric scalar Greens function for
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calculating the shorted-circuit capacitance matrix and moving its frequency-
dependent portion to the inductance matrix. It is, mathematically, done by
separating Gφ,SP into two parts as

G0
φ,SP = Gφ,SP with k0 → 0 (4)

Gf
φ,SP = Gφ,SP −G0

φ,SP. (5)

This treatment then leads to the coefficient of potential as

ppi,n = pp0i,n + ppfi,n =
1

aian

∫∫
G0

φ,SP ds′ndsi

+
1

aian

∫∫ (
Gf

φ,SP +Gφ,SP

)
ds′ndsi (6)

between capacitive mesh i and mesh n. The frequency-dependent second
integral is used only for generating the inductive matrix.

The mutual inductance between two inductive meshes (l and m) or self-
inductance (l = m) is given by

Ll,m =
1

wlwm

∫∫ (
Gxx

A,SP +Gxx
A,SW

)
ds′ndsi. (7)

It is generally a complex number. As there is no matrix inversion involved
here, the imaginary part does produce a physically meaningful self-resistance
(l = m). Now, by absorbing the second integral in (6) into the inductance
term (7), a generalized self- and mutual inductance is formed. The resulting
generalized inductance becomes (see Fig. 1)

L̄l,m = Ll,m +
ppf+l,n1

ω2
− ppf−l,n1

ω2
− ppf+l,n2

ω2
+

ppf−l,n2

ω2
. (8)

Figure 1: Coupling configuration between inductors l and m.
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The significance of introducing such generalized inductance is that it not only
correctly accounts for the radiation effect, but also preserves the physical
meaning of the capacitance matrix.

3 Results

Figure 2: Short dipole on microstrip substrate. (a) Physical configuration;
(b) equivalent circuit.

Figure 3: Radiation resistance components of a short dipole on microstrip
substrate for h = 2mm and h = 4mm.

3.1 Short dipole on microstrip substrate

Following the discussion above, the real part of the term jωL (radiation
resistance) of an short (infinitesimal) dipole on microstrip substrate (see
Fig. 2) can be decomposed into four components including the original free-
space term, the term due to quasi-static images, the surface-wave term,
and the remaining term contributed by lateral waves and other higher order
effects. Fig. 3 depicts the cases of εr = 2.33, h = 2mm and h = 4mm.
It can be seen from the figure that, for the h = 2mm case, the surface
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waves do not radiate (Rsfw = 0) until k0l reaches ∼0.13. At this point,
the component (Rtotal −Rsfw) represents the power radiated into free-space
drops significantly. A similar feature can be seen for the h = 4mm case. In
this case, the power radiated into free-space drops every time when a new
surface wave mode starts propagating.

Figure 4: Geometry for the patch antenna.

Figure 5: Simulated results (|S11|) for the patch antenna with negligible
surface waves.

3.2 Patch antenna

Another example to be studied is a patch antenna on thin substrate.
The substrate used in this example has a dielectric constant of 2.33 and a
thickness of 0.787mm. As the substrate is thin and has a small value of
dielectric constant, the surface wave contributions to the Greens functions
are relatively insignificant at low frequencies. The size of the patch antenna
(see Fig. 4) is 16.7mm × 20mm. It is fed by a microstrip with an inset of
5.4mm to match to a 50Ω transmission line. The geometry is divided into a
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total of 127 capacitive meshes and 222 inductive meshes, corresponding to a
meshing scheme of ∼30 meshes per (free-space) wavelength at 6.2GHz. From
the simulated results in Fig. 5, it is seen that the patch operates at around
5.8GHz. The scattering parameters calculated by the PEEC technique using
the concept of generalized complex inductance agree well with those from a
MoM-based commercial EM solver.

4 Model reduction

Generally, it is not easy to obtain any physical insights by directly ex-
amining a PEEC-generated equivalent circuit. To obtain a more concise
and physically intuitive circuit model, the model order reduction (MOR)
technique described in [6] can be used. In this technique, most circuit nodes
except the port nodes (nodes connecting to the source) of a PEEC-generated
equivalent circuit are eliminated by using the Y − to − Δ transformation.
Following a set of elimination criteria, the circuit can usually be simplified to
containing only a few nodes. For the example shown in Fig. 6, if the dipole is
electrically small, its equivalent circuit may be reduced to a pure capacitive
circuit with only three capacitors (Fig. 7). It is important to notice that
the inductive components get mixed with the capacitive components and
vice versa during the reduction process and this leads to the final simplified
circuit containing complex-valued capacitors as well.

Figure 6: Short thin-strip dipole and its PEEC model.

An antenna is considered to be electrically small if it satisfies the in-
equality of ka � 0.5, where k is the free-space propagation constant and a is
the radius of the smallest sphere that can completely encloses the antenna.
Two short thin-strip dipoles, namely, a straight dipole and a meandered
dipole (Fig. 8) are investigated here with ka = 0.5 at 4GHz. Assuming
there is no conductor loss, it is expected that the meandered dipole should
have a smaller radiation quality (Q) factor when comparing to the straight
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Table 1: Component values for the straight dipole.

f (GHz) C1 (F) C2 (F)

1 1.41× 10−14 − j3.04 × 10−18 7.30 × 10−14 − j2.23 × 10−21

2 1.44× 10−14 − j2.52 × 10−17 7.35 × 10−14 − j7.31 × 10−20

3 1.49× 10−14 − j8.98 × 10−17 7.45 × 10−14 − j5.76 × 10−19

4 1.57× 10−14 − j2.31 × 10−16 7.58 × 10−14 − j2.57 × 10−18

Table 2: Component values for the meandered dipole

f (GHz) C1 (F) C2 (F)

1 4.50× 10−14 − j1.95 × 10−17 1.37 × 10−13 − j7.79 × 10−21

2 5.09× 10−14 − j1.91 × 10−16 1.44 × 10−13 − j2.97 × 10−19

3 6.53× 10−14 − j9.76 × 10−16 1.59 × 10−13 − j3.12 × 10−18

4 1.08× 10−13 − j5.26 × 10−15 1.92 × 10−13 − j2.37 × 10−17

one. However this information cannot be seen by simply looking at their
PEEC models. On the other hand, this can be easily confirmed from the
concise circuit models derived by the algorithm discussed above. In both
cases, their PEEC-generated equivalent circuits can be simplified to the one
shown in Fig. 7 with the corresponding components values listed in Table 1
and Table 2, respectively.

By looking at the concise circuit models for these two antennas, it is
clear that they are both electric-type within the operating frequency band
of interest (<4GHz) because they can be modeled by a circuit with only
capacitors. Another interesting fact is that these complex-valued capacitors
have their imaginary values increase with the operating frequency. In fact,
the imaginary part of such a capacitor represents its loss from radiation.
When looking into the excitation port, the circuit in Fig. 7 can be further

Figure 7: Short thin-strip dipole and its PEEC model.



72 Generalized complex inductance for radiation problems

simplified to just a single capacitor of value C = C1 + C2/2. Its quality
factor is approximately the radiation Q factor of the antenna. Fig. 9 shows
the excitation port admittance and the approximated Q factors for the two
antennas at different operating frequencies. It can be seen from the figure
that the radiation resistance (conductance) of the meandered dipole increases
rapidly when ka approaching 0.5. To verify the accuracy of our simplified
circuit models, results (solid lines) obtained from a commercial full-wave
electromagnetic solver are also shown and they agree well with each other.

a b

Figure 8: Straight (a) and meandered (b) small dipoles.

5 Conclusions

A new PEEC formulation, which incorporates the concept of generalized
complex inductance, for modeling of microstrip structures has been intro-
duced. In this PEEC formulation, the radiation loss is taken into account
by having complex-valued inductors in the equivalent circuit. And through
these inductors, contributions from various radiation mechanisms, such as
spatial and surface waves, to the overall radiation are revealed. In addition,
a technique to automatically derive a concise and physically intuitive equiv-
alent circuit model for an electrically small radiating structure is presented.
Important information such as radiation resistance, capacitive and induc-
tive storage energy of the structure can be identified directly by examining
this concise circuit model. In addition, such a circuit model can readily
be incorporated into other higher level design exercises so that impacts of
the structure on the overall system performance can easily be simulated.
The proposed algorithm is, therefore, useful for modern integrated high-
speed/high-frequency circuit design.
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Figure 9: Simulated port for the two example dipoles. (a) Conductance; (b)
susceptance; (c) approximated radiation Q factors.
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Abstract

Generalized-ray theory for time-domain electromagnetic fields in a
horizontally layered medium is developed. After introducing ap-
propriate integral transformations and source-type field represen-
tations in vertically inhomogeneous media, the solution is writ-
ten out in terms of generalized ray constituents whose space-time
counterparts are constructed with the aid of the Cagniard-DeHoop
technique. The formulation lays the foundation to rigorously study
time domain field behavior in numerous practical topologies where
a stratified multilayer is involved, such as planar antennas and cir-
cuits, but also EMC and propagation problems.

1 Introduction

The ever increasing bit rates in digital electronic and electrical signal gen-
eration, transmission, propagation and reception in a wide field of technical
applications such as microelectronic devices, inter- and intra-device wireless
signal transfer and the next generation of mobile communication, put severe
demands on the computational tools for designing such devices. The kind
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of structures we are interested in can be considered as a limited number of
geometrical addenda imposed on a background structure of mutually paral-
lel layers of different constitution including impenetrable interfaces. To the
knowledge of the authors, electromagnetic time-domain signals have never
been studied in a general multilayered medium. This in contrast to fre-
quency domain, where literally hundreds of papers have been published on
this topic. Here, standard ways of handling multilayered media is to apply
Sommerfeld’s theory established as early as in 1909 [1]. In this respect, ini-
tial attempts to tackle the simplest structures and related numerical issues
can be traced back to the late 1970s [2]. Further research in subsequent
decades was mainly focused on various mixed-potential formulations [3–6]
and on a numerical handling of Sommerfeld’s integrals [7, 8]. For a detailed
list of references on the subject we refer the reader to a review paper by
Michalski and Mosig [9].

The most efficient tool for analysis of multilayered structures is the
boundary integral equation method. The propagation in such a stratified
medium can be handled analytically, because the relevant Green’s functions
admit an analytical represention in the transform domain. Adhering to the
flexibility and the versatility of surface integral equation techniques (with
their lower dimensionality), and considering the great successes reached with
Green’s function formulations in the frequency domain, the principal task in
this paper is to construct expressions for the time-domain Green’s functions
involved. For homogeneous isotropic subdomains such Green’s functions are
well-known and easily implemented, but for a background with stratifica-
tion no simple expressions exist. However, such expressions can be derived
by applying a sophisticated mathematical tool known as the “Cagniard-
DeHoop technique” [10]. It has been originally developed by Cagniard for
seismic wave propagation problems [11,12] and later considerably simplified
by De Hoop. It has found a wealth of applications in various branches of
physics, for example, in acoustics [13], elastodynamics [14] and electromag-
netics [15–17]. Initial efforts in antenna and microwave engineering can be
found in [18], where Xia et al. introduce time-domain Green’s functions
for a microstrip structure based on the Cagniard-DeHoop method with the
time Fourier transform [19, Ch. 4]. More recently, the pulse-excited elec-
tromagnetic radiation from elementary slot antennas is described by De
Hoop et al. [20]. As far as generalizations of the method are concerned,
the Cagniard-DeHoop method is capable of handling arbitrarily anisotropic
solid media [21], continuously layered fluid media [22] as well as dielectric
media with conductive losses [23].

Scientifically, the construction of the time-domain Green’s function for
the EM field in multilayered media is based upon a number of ingredients.
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First of all, the nature of the geometrical configuration requires a consis-
tent decomposition of the relevant field quantities as well as the pertaining
field equations into components parallel to the interfaces of the layers and
components perpendicular to them. Secondly, the spatial shift invariance
of the configuration in the plane parallel to the interfaces has to be appro-
priately accounted for. In the Cagniard-DeHoop technique this is done by
introducing for the field components the so-called wave slowness representa-
tion. This representation employs a one-sided Laplace transformation with
respect to time with positive real transform parameter, which parameter is
subsequently used as a scaling paramater in the spatial Fourier representa-
tion parallel to the layering. In the slowness domain then a one-dimensional
wave propagation problem results in the direction normal to the layering,
whose constituents are written as being generated by the source that excites
the field upon which constituents successively reflected against and trans-
mitted across interfaces are introduced. Each traversal across the layer takes
the required propagation time, as a consequence of which the total number
of constituents within any prescribed time window of observation is finite.

Generalized ray theory for horizontally multilayered media can be in lit-
erature found in connection with elastodynamics and acoustics, mainly for
geophysical applications [24,25]. The theory for a horizontally layered solid
was given by Pao and Gajewski [26] using the original Cagniard’s technique.
To the best knowledge of the authors, a proper electromagnetic formulation
is missing in literature. The theory for electromagnetic fields presented in
this paper partially leans on the wave-matrix formalism developed for im-
pulsive acoustic field radiation in a discretely multilayered fluid given by
De Hoop [27]. However, the vector nature of electromagnetic fields leads to
source-type representations for the electric and the magnetic field strengths
via potential functions. Here, no postulate of potential functions [9, 28] is
required and the representations are constructed directly from the field equa-
tions and the pertaining interface conditions. Finally, the transform-domain
solution is written out in terms of generalized-ray constituents which are
subsequently transformed to space-time by applying the Cagniard-DeHoop
method.

The presented theory can find wide applications in computational elec-
tromagnetics serving as a basis for time-domain surface-integral equation
techniques in stratified media. It can contribute to the solution of time-
domain related antenna and circuit design problems, and EMC and propa-
gation problems. With the generation of ultra short pulses in terahertz EM
fields, the method is expected to play an illuminating role in the explanation
of the (time-domain) phenomena involved [29].
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2 Problem description

The problem under consideration is given in Fig. 1. It consists of a
stratified medium with electromagnetic properties varying in vertical direc-
tion only. The position in the problem configuration is localized by the
coordinates {x1, x2, x3} with respect to a fixed, orthogonal Cartesian ref-
erence frame. The spatial reference frame is defined with respect to the
origin O and the three mutually perpendicular base vectors {i1, i2, i3} of
unit length each; they form, in the indicated order, a right-handed system.
The subscript notation for Cartesian tensors with the summation conven-
tion for repeated subscripts is employed [30, Sec. A.2]. The Levi-Civita
tensor (completely antisymmetrical unit tensor of rank 3) is ek,m,p = 1 for
{k,m, p} = even permutation of {1, 2, 3}, ek,m,p = −1 for {k,m, p} = odd
permutation of {1, 2, 3} and ek,m,p = 0 in all other cases and the Kronecker
tensor (symmetrical unit tensor of rank 2) is δi,j = 1 for i = j and δi,j = 0
for i 	= j [30, Sec. A.7]. Lower-case Latin subscripts stand for the values
{1, 2, 3} while lower-case Greek subscripts stand for the values {1, 2} only.
Within the reference frame, the position of a point is defined by the position
vector x = xkik, x ∈ R

3. The spatial differentiation with respect to xm
is denoted by ∂m. The time coordinate is denoted by t and symbol ∂t is
reserved for the partial differentiation with respect to time.

x3 receiver

�{εND , μND} DND

x3;ND

{εS+1, μS+1} DS+1

x3;S+1

{εS , μS} DS
x3;S

source×
{ε2, μ2} D2

x3;2

{ε1, μ1} D1

Figure 1: Horizontally layered medium in which electromagnetic waves are
generated by an impulsive point-source.

The layered medium consists of ND domains each of which is char-
acterized by the corresponding electric permittivity εN = εN (x3), mag-
netic permeability μN = μN (x3), N = {1, ..., ND} and by its thickness
dN = x3;N+1 − x3;N for N = {2, ..., ND − 1}. The corresponding electro-
magnetic wave speed is cN = (εNμN )−1/2 > 0. Both electric permittivity
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and magnetic permeability are assumed to be real-valued, positive and piece-
wise constant functions of x3 only. On account of this property, the problem
configuration is linear, instantaneously reacting, time invariant and shift
invariant in the x1 − x2 plane. Loss mechanisms are not incorporated.

The electromagnetic field is radiated by an impulsive source that is lo-
cated at the source level x3 = x3;S placed at the interface of two domains
with nonzero or zero contrast in electromagnetic properties. The latter can
be considered as the source placed within one domain. Consequently, the
response is probed at the receiving point that can be defined either at the
interface or within a domain. If an observed quantity shows a jump discon-
tinuity across the interface, then the receiver is placed just below or just
above the interface. It is assumed that a source starts to act at t = 0 and
that prior to this instant the electromagnetic fields vanish throughout the
configuration (initial condition).

3 Definition of the field problem

In each subdomain of the configuration, the electric field strength Ek

and the magnetic field strength Hp are continuously differentiable functions
with respect to xk and t and satisfy the electromagnetic field equations [30,
Sec. 18.3]

−ek,m,p∂mHp + ε∂tEk = −Jk (1)

ej,n,r∂nEr + μ∂tHj = −Kj (2)

where Jk is the volume electric current density andKj is the volume magnetic
current density defined for a point source at (0, 0, x3;S) as

{Jk,Kj}(x, t) = {jk, kj}(t)δ(x1, x2, x3 − x3;S) (3)

We assume that {jk, kj}(t) = {0, 0} for t < 0. The electromagnetic field
equations (1)–(2) are across interfaces supplemented by the boundary con-
ditions

lim
x3↓x3;N

Hπ − lim
x3↑x3;N

Hπ = e3,π,κjκ(t)δ(x1, x2)δN,S (4)

lim
x3↓x3;N

Eρ − lim
x3↑x3;N

Eρ = e3,ι,ρkι(t)δ(x1, x2)δN,S (5)

for all t ∈ R, xν ∈ R, N = {2, ..., ND}. To solve the electromagnetic
field equations (1)–(2) with the interface boundary conditions (4)–(5) and
the initial condition, we apply the integral transformations that take the
advantage of the time invariance and the shift invariance in the x1 − x2
plane.
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4 Transform-domain field representation

Space-time expressions for the electromagnetic field radiated from impul-
sive sources will be constructed using the Cagniard-DeHoop technique [10].
The technique employs a unilateral one-sided Laplace transformation with
respect to time

Êk(x, s) =

∫ ∞

t=0
exp(−st)Ek(x, t)dt (6)

in which s is taken real-valued and positive relying on Lerch’s uniqueness
theorem [31, Sec. 5]. The theorem states that uniqueness of the inverse
transformation is ensured under the weaker condition that Êk(x, s) is spec-
ified at the sequence (Lerch’s sequence) of real s values: L = {s ∈ R; sn =
s0 + nh, s0 > 0, h > 0, n = 0, 1, 2, ...}. Subsequently, the wave slowness
representation parallel with respect to the layering is used

Êk(x, s) =
( s

2π

)2 ∫
α2∈R

dα1

∫
α2∈R

exp(−isαμxμ)Ẽk(α1, α2, x3, s)dα2 (7)

involving the real values of the complex wave slowness parameters αμ. Upon
applying (6)–(7) to (1)–(5) we arrive at the transform-domain field equations

−ek,m,p∂̃mH̃p + sεẼk = −J̃k (8)

ej,n,r∂̃nẼr + sμH̃j = −K̃j (9)

with

{J̃k, K̃j}(α1, α2, x3, s) = {ĵk, k̂j}(s)δ(x3 − x3;S) (10)

and the corresponding transform-domain interface boundary conditions

lim
x3↓x3;N

H̃π − lim
x3↑x3;N

H̃π = e3,π,κĵκ(s)δN,S (11)

lim
x3↓x3;N

Ẽρ − lim
x3↑x3;N

Ẽρ = e3,ι,ρk̂ι(s)δN,S (12)

for all s ∈ L, αν ∈ R, N = {2, ..., ND} and with ∂̃κ = −isακ, ∂̃3 = ∂3. In
the next step we will take the advantage of the geometrical properties of the
problem configuration and decompose the transform-domain field quantities
and the field equations into components parallel to the interfaces of the layers
and components perpendicular to them.
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5 Transform-domain field decomposition

With regard to the geometry of the problem configuration, the transform-
domain electromagnetic field equations (8)–(9) are decomposed as

−ek,μ,π∂̃μH̃π − ek,μ,3∂̃μH̃3 − ek,3,π∂3H̃π + sεẼk = −J̃k (13)

ej,ν,ρ∂̃νẼρ + ej,ν,3∂̃νẼ3 + ej,3,ρ∂3Ẽρ + sμH̃j = −K̃j (14)

Upon decomposing the field quantities and eliminating the vertical ones
{Ẽ3, H̃3}, after a few steps we arrive at

∂2
3Ẽπ − s2γ2Ẽπ

= sμJ̃π − ∂̃π ∂̃ν J̃ν/sε− ∂̃π∂3J̃3/sε− eπ,ρ,3∂3K̃ρ + eπ,ρ,3∂̃ρK̃3 (15)

∂2
3H̃ρ − s2γ2H̃ρ

= sεK̃ρ − ∂̃ρ∂̃πK̃π/sμ− ∂̃ρ∂3K̃3/sμ+ eρ,κ,3∂3J̃κ − eρ,κ,3∂̃κJ̃3 (16)

Once the tangential field strengths are found, the vertical ones follow from
Eqs. (13) and (14). The system of Eqs. (15)–(16) with the tangential elec-
tromagnetic field strengths as fundamental unknown quantities will serve as
the point of departure for the next analysis. As will be shown, it clearly
reveals a choice of potentials that represent the electromagnetic fields in a
vertically inhomogeneous medium.

6 Source-type EM field representation in stratified

media

The hypersingular spatial behavior of direct electric- and magnetic-type
integral equation kernels invokes a need of using source-type field represen-
tations via potential functions that possess a weaker spatial singularity inte-
grable over a surface domain. It is well-known from theory of electromagnetic
fields in horizontally layered media that the fields excited by the vertically-
oriented dipole can be represented using a single scalar function while a
complete description of the fields due to the horizontally-oriented dipole re-
quires at least two scalar functions [28]. Such scalar functions can be in a
general formulation viewed either as components of the electric/magnetic
Green’s tensor or as scalar potentials. The commonly used approach in this
respect postulates the components of the corresponding Green’s tensor lead-
ing to various scalar potential functions. A number of choices have been
previously discussed concerning the frequency-domain mixed-potential in-
tegral formulations [4, 6]. The source-type field representation formulated



82 Generalized-ray theory for electromagnetic fields in layered media

here naturally follows from the system of Eqs. (15)–(16). In view of the
problem linearity, different types of sources appearing in the right-hand side
of Eqs. (15)–(16) can be discussed separately. For the sake of conciseness,
the results are provided for a vertical electric dipole only. For a complete
description including the handling of horizontal sources we refer the reader
to [32].

A general solution of Eqs. (15) and (16) corresponding to the vertical
electric-current excitation (10) can be written as

Ẽπ(α1, α2, x3, s) = ∂̃π∂3ĵ3(s)G̃
J⊥(α1, α2, x3, s)/sε (17)

H̃ρ(α1, α2, x3, s) = eρ,π,3∂̃π ĵ3(s)G̃
J⊥(α1, α2, x3, s) (18)

Using Eq. (18) in (13) and Eq. (17) in (14) gives the vertical electromagnetic
components

Ẽ3(α1, α2, x3, s) = −sμĵ3(s)G̃
J⊥ + ĵ3(s)∂

2
3G̃

J⊥/sε (19)

and H̃3(α1, α2, x3, s) = 0. Let the Green’s function G̃J⊥ corresponding to
the solution in DN be G̃J⊥

N for N = {1, ..., ND}. Then upon applying the
interface boundary conditions (11)–(12) we get

lim
x3↓x3;N

G̃J⊥
N − lim

x3↑x3;N

G̃J⊥
N−1 = 0 (20)

lim
x3↓x3;N

∂3G̃
J⊥
N /εN − lim

x3↑x3;N

∂3G̃
J⊥
N−1/εN−1 = −δN,S (21)

for N = {2, ..., ND}. The boundary conditions on impenetrable interfaces
follow from Eqs. (17)–(18) as G̃J⊥ = 0 and ∂3G̃

J⊥ = 0 upon approaching
the Perfectly Magnetically Conducting (PMC) interface and the Perfectly
Electrically Conducting (PEC) interface, respectively. Other source config-
urations are treated along the same lines.

7 Wawe-matrix formalism

In this section we provide the wave-matrix formalism for electromagnetic
fields in layered media excited by the vertical electric-current excitation. The
formulation is based on the methodology developed by De Hoop for acoustic
waves in a layered fluid [27]. The handling of horizontal electromagnetic
sources is much more involved [32] and is not discussed here.

A general solution satisfying the causality condition can be written as

G̃J⊥
N = W+

N exp[−sγN (x3 − x3;N )] +W−
N exp[−sγN (x3;N+1 − x3)] (22)
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in DN for N = {1, ..., ND}, where the corresponding vertical propagation
coefficient is given as

γN =
(
1/c2N − ∂̃μ∂̃μ/s

2
)1/2

> 0 (23)

for s ∈ L, αν ∈ R. In Eq. (22), {W+
N ,W−

N } are upogoing/downgoing
transform-domain wave amplitudes in DN with {W+

1 ,W−
ND} = {0, 0} that

are mutually related via scattering relations

W+
N = S̄+−

N W−
N + S̄++

N W+
N−1 +X+

N (24)

W−
N−1 = S̄−−

N W−
N + S̄−+

N W+
N−1 +X−

N−1 (25)

with

{S̄+−
N , S̄−−

N } = {S+−
N , S−−

N } exp(−sγNdN ) (26)

{S̄++
N , S̄−+

N } = {S++
N , S−+

N } exp(−sγN−1dN−1) (27)

for N = {2, ..., ND}, dN = x3;N+1 − x3;N . The wave amplitudes on the
right-hand side of Eqs. (24)–(25) represent the waves propagating away from
N -th interface that are related through the scattering/coupling matrix to the
waves propagating toward the interface. The parameters {X+

N ,X−
N−1} then

represent the source-coupling terms. The wave amplitudes in the structure
consisting of ND domains with ND − 1 interfaces can be therefore related
by the (2ND− 2)× (2ND− 2) scattering matrix with 4(ND− 2) scattering
parameters.

In this way, the systems of linear equations can be shortly written as[
W
]
=
[
S̄
] · [W ]

+
[
X
]

(28)

and solved using a Neumann iterative procedure [33, Sec. 4.5] leading to

[
W
]
=

M∑
m=0

[
S̄
]m ·

[
X
]
+
[
S̄
]M+1 ·

[
W
]

(29)

provided that ||S̄|| < 1 which is always met for the analyzed problem con-
figuration. Since the scattering matrices contain the Laplace transformation
parameter only through the exponential factors that in space-time represent
a time delay, each higher constituent in the sum of Eq. (29) arises at a later
time than the previous one. Based on the fact that one is always interested
in the wave field in a finite time window of observation, a finite number
of constituents is sufficient to get the exact time-domain response. More-
over, the iterative procedure can be terminated once the constituents become



84 Generalized-ray theory for electromagnetic fields in layered media

negligible (below a prescribed treshold) due to the successive reflections and
transmissions at the interfaces whose number increases with m.

The wave amplitudes of wave fields excited by the vertical electric dipole
are at the N -th interface interrelated via the scattering parameters given by

S+−
N = (γN/εN − γN−1/εN−1)/(γN/εN + γN−1/εN−1) (30)

S−−
N = (2γN/εN )/(γN/εN + γN−1/εN−1) (31)

S−+
N = (γN−1/εN−1 − γN/εN )/(γN−1/εN−1 + γN/εN ) (32)

S++
N = (2γN−1/εN−1)/(γN−1/εN−1 + γN/εN ) (33)

for N = {2, ..., ND}. If an impenetrable interface is present, then we can
find

S+−
2 = −1 or/and S−+

ND = −1 on PMC (34)

S+−
2 = +1 or/and S−+

ND = +1 on PEC (35)

The corresponding source-coupling coefficients differ from zero only at the
source level

X+
S = X−

S−1 = 1/[s(γS/εS + γS−1/εS−1)] (36)

Once the scattering and source-coupling parameters are known, the transform-
domain field description is completed. In the final step, the transform-
domain constituents appearing in Eqs. (32) and (33) are transformed to
the space-time domain using the Cagniard-DeHoop technique [10].

8 Conclusions

The source-type electromagnetic field representations in vertically inho-
mogeneous media have been constructed and the generalized-ray theory for
electromagnetic fields in piecewise homogeneous horizontally layered media
has been formulated.

The solution for electromagnetic fields propagating in layered media has
been built up in terms of time-domain constituents successively arriving
at a point of observation. The solution is exact up to the arrival time of
the next time-domain constituent and can serve as a basis for the time-
domain boundary integral equation techniques, for a time-domain modeling
of electromagnetic field propagation in stratified problem configurations or
for a benchmarking of purely numerical techniques.
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Abstract

A hybrid electromagnetics (EM)-circuit simulation method em-
ploying the discontinuous Galerkin finite element time domain
method (DGFETD) is developed to model single lumped port net-
works comprised of both linear and non-linear elements. The whole
computational domain is split into two subsystems. One is the
EM subsystem that is analyzed by the DGFETD, while another
is the circuit circuit subsystem that is modeled by the Modified
Nodal Analysis method (MNA) to generate a circuit subsystem.
The coupling between the EM and circuit subsystems is achieved
through a lumped port. Due to the local properties of DGFETD
operations, only small coupling matrix equation systems are in-
volved. To solve non-linear devices, the standard Newton-Raphson
method is applied to solve the established non-linear system equa-
tions. Numerical examples are presented to validate the proposed
algorithm.

1 Introduction

With the ever increasing operating frequencies of microwave circuits, the
minimization of chip packaging, and the requirement of multifunctional ca-
pabilities, any successful system/subsystem design must take into account
unintentional emissions and couplings from lumped circuit networks. To
model non-linear devices, time domain simulators are more favorable com-
pared with frequency domain simulators since transient analysis can directly
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consider the non-linear properties without resorting to harmonic balance
method.

Recently, many transient simulators are available to analyze the inter-
actions between the full-wave and the circuit regions. Among them, fi-
nite-difference time-domain (FDTD) considers lumped elements by a direct
stamping technique [1], using an equivalent source concept [2], or an algo-
rithm based on the admittance matrix in Laplace domain [3].

Time domain finite element method (TDFEM) is another popular algo-
rithm. In [4–6], TDFEM combined with the MNA is employed to study
the transient behavior of non-linear devices. A global system is constructed
by coupling the full-wave parts with circuit subsystems. When non-linear
elements are involved, this global matrix system becomes time dependent.
A significant amount of time is consumed in factorizing this matrix.

DGFETD [7] is an amenable alternative for FDTD and TDFEM. Com-
pared with FDTD, it supports various types and shapes of elements, unstruc-
tured and non-conformal meshes. It also can achieve high order accuracy.
Unlike FEM, all the operations of DGFETD are local because of its discon-
tinuous property. In this way, the resultant mass matrix is locally coupled
with the dimension equal to the number of degrees of freedom in that ele-
ment. Hence, the fully explicit time marching scheme with high efficiency
is obtained. In [8], DGFETD is applied to study the transient behavior of
interconnect structures with linear lumped elements. The lumped elements
are treated by assigning each of them onto a rectangular surface. For this
kind of direct stamping method, it is quite complex or impossible to model
arbitrary complex networks. In [9], the lumped network is solved by a di-
rect recall of SPICE simulator. A lot of time is wasted on the interface
communication.

The aim of this letter is to develop a hybrid EM-circuit simulator to
model arbitrary complex single port networks including both linear/non-
linear elements. The EM part and circuit subsystem couples with each other
through an lumped port residing over an rectangular impedance surface. The
EM part is analyzed by solving the Maxwell’s equation via DGFETD, while
the circuit part is modeled by the MNA based on Kirchoff’s circuit laws
(KCL). The coupling from the EM subsystem to the circuit subsystem is
achieved by introducing a voltage source at the lumped port. This voltage
source is computed from the integration of the electric field obtained by
DGFETD, while the coupling from the circuit subsystem to the EM sub-
system is realized by introducing a current source calculated through the
circuit solver at the lumped port. Compared with the FEM [4–6], the cou-
pled system (as shown in Section 2.3) is quite small and can be solved with
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trivial cost. This property is very important for circuit networks including
nonlinear elements. To verify our algorithm, numerical results are presented.

2 Formulation

This section details the proposed EM-circuit simulator. The basics of
DGFETD is formulated in Section 2.1, and the circuit subsystem is presented
in Section 2.2. The details of the coupling scheme between the EM and
circuit subsystems are described in Section 2.3.

2.1 Formulation of DGFETD

Suppose that we are concerning the electromagnetic field in the compu-
tational domain Ω bounded by ∂Ω. The global domain Ω is splitted into
a set of non-overlapping subdomains Ωi bounded by a surface ∂Ωi, where
Ω =

⋃
Ωi. Applying the discontinuous Galerkin testing procedure to the

two first-order Maxwell’s equations leads to the following two equations,∫
Ωi

Φ
(i)
k ·

(
ε
∂E

∂t
−∇×H

)
dV =

∫
∂Ωi

Φ
(i)
k · [n̂× (H∗ −H)− J im

]
dS (1)

∫
Ωi

Ψ
(i)
l ·

(
μ
∂H

∂t
+∇×E

)
dV = −

∫
∂Ωi

Ψ
(i)
l · n̂× (E∗ −E) dS (2)

whereΦ
(i)
k denotes the k-th vector basis function forE in the i-th subdomain

and Ψ
(i)
l denotes the l-th vector basis function for H in i-th subdomain. J im

represents the imposed electrical current density in the EM subsystem. Here,
it is assumed to be zero. n̂ is the unit outward normal vector. n̂×H∗ and
n̂ ×E∗ are called the numerical flux for communications between adjacent
elements. In elements containing lumped ports, the central flux

n̂×H∗ = n̂× H− +H+

2
− JCKT

2
(3)

n̂×E∗ = n̂× E− +E+

2
(4)

is employed, which is derived from the boundary condition over the lumped
ports

n̂× (H+ −H−) = JCKT (5)

n̂× (E+ −E−) = 0 (6)
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while the upwind flux

n̂×E∗ = n̂× (Y −E− − n̂×H−) + (Y +E+ + n̂×H+)

Y − + Y +
(7)

n̂×H∗ = n̂× (Z−H− + n̂×E−) + (Z+H+ − n̂×E+)

Z− + Z+
(8)

is used in the elements without lumped ports. The superscripts - and +
represent local and neighboring elements, respectively. Z− is the charac-
teristic wave impedance in the local element and Z+ is the characteristic
wave impedance in the corresponding neighboring element. Y − = 1/Z− and
Y + = 1/Z+ are characteristic wave admittances. JCKT denotes the current
through the lumped port surface.

Next, the fields E and H in the domain Ωi are expanded by local ba-

sis functions: E =
∑n

(i)
e

k=1 e
(i)
k Φ

(i)
k , H =

∑n
(i)
h

l=1 h
(i)
l Ψ

(i)
l , where n

(i)
e and n

(i)
h

are the number of degrees of freedom for E and H in the i-th domain, re-
spectively. By substituting these two expressions together with (3),(4) into
(1),(2), the EM matrix system in the elements where lumped ports reside
can be constructed as

M (i)
e

∂e(i)

∂t
= S(i)

e h(i) − j(i)

2
− F

(ii)
eh h(i) + F

(ij)
eh h(j) (9)

M
(i)
h

∂h(i)

∂t
= −S

(i)
h e(i) + F

(ii)
he e(i) − F

(ij)
he e(j) (10)

where

[
M (i)

e

]
(kl)

=

∫
Ωi

Φ
(i)
k · εΦ(i)

l dV (11)

[
M

(i)
h

]
(kl)

=

∫
Ωi

Ψ
(i)
k · μΨ(i)

l dV (12)

[
S(i)

e

]
(kl)

=

∫
Ωi

Φ
(i)
k ·∇×Ψ

(i)
l dV (13)

[
S

(i)
h

]
(kl)

=

∫
Ωi

Ψ
(i)
k ·∇×Φ

(i)
l dV (14)

(
j(i)

)
(k)

=

∫
∂Ωi,port

Φ
(i)
k · JCKTdS (15)
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[
F

(ii)
eh

]
(kl)

=
1

2

∫
∂Ωi

Φ
(i)
k · n̂×Ψ

(i)
l dS (16)

[
F

(ij)
eh

]
(kl)

=
1

2

∫
∂Ωi

Φ
(i)
k · n̂×Ψ

(j)
l dS (17)

[
F

(ii)
he

]
(kl)

=
1

2

∫
∂Ωi

Ψ
(i)
k · n̂×Φ

(i)
l dS (18)

[
F

(ij)
he

]
(kl)

=
1

2

∫
∂Ωi

Ψ
(i)
k · n̂×Φ

(j)
l dS (19)

where superscript j represents the neighboring element of the i-th element.

The Φ
(i)
k and Ψ

(i)
k denote the k-th testing basis for the E and H-fields in the

i-th element, respectively. The Φ
(j)
l and Ψ

(j)
l denote the l-th basis functions

for the E and H-fields in the j-th element, respectively.

The first order time derivatives will be approximated using the centering
difference method, which is second order accurate. The fully discrete local
system equations can be obtained from the semi-discrete system in (9) and

(10) with the approximation j
(i)

n+ 1
2

=
(
j
(i)
n+1 + j

(i)
n

)
/2 as

M (i)
e e

(i)
n+1 = M (i)

e e(i)n +Δt

[(
S(i)

e − F
(ii)
eh

)
h
(i)

n+ 1
2(

j
(i)
n+1 + j(i)n

)
/4 + F

(ii)
eh h

(j)

n+ 1
2

]
(20)

M
(i)
h h

(i)

n+ 3
2

= M
(i)
h h

(i)

n+ 1
2

+Δt
[(

−S
(i)
h + F

(ii)
he

)
e
(i)
n+1 − F

(ij)
he e

(j)
n+1

]
(21)

2.2 Construction of circuit subsystem equations with MNA

To generate the circuit subsystem equations, the MNA based on KCL
is employed to model single port lumped networks with arbitrary number
of linear/non-linear elements. The resultant circuit matrix equation at time
t = (n+ 1)Δt is

[
[Y ] −[B]

−[B]T 0

] [
V CKT

n+1

ICKT
n+1

]
+ ICKT,nl

n+1

(
V CKT

n+1

)
=

[
ICP
n

V Port
n+1 + V ind

n+1

]
(22)

where the [Y ] matrix is determined by interconnections between the circuit
elements, the [B] matrix is determined by the connection of the supplied
voltage sources. V CKT

n+1 denotes the unknown non-reference node voltages,
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ICKT
n+1 denotes the unknown currents through voltage sources. ICKT,nl

n+1 rep-

resents currents through branches containing non-linear elements. ICP
n is

comprised of both the supplied current source and those derived from the
companion models of inductors and capacitors, V Port

n+1 holds the values of the
supplied voltage sources coupled from the EM part, while the V ind

n+1 repre-
sents the independent voltage source in the circuit subsystem. The overall
dimension of the circuit subsystem in (22), denoted as NCKT, is equal to the
number of non-reference voltage nodes plus the number of voltage sources.

2.3 Coupling between the EM and circuit subsystems

The coupling between the EM and circuit subsystems is achieved by
introducing impressed current and voltage sources at the rectangular lumped
ports with width w and length l. Since the lumped port is small compared to
the wavelength, quasi-static approximation is assumed at the lumped port.
It means that the electric and magnetic fields are constant over the lumped
port. At the time t = nΔt, the supplied voltage at the q-th lumped port
associated to i-th element is determined by DGFETD and expressed as

V Port
n,q =

ne∑
p=1

e(i)n,p

∫
Φ(i)

p · l̂qdl = l

ne∑
p=1

e(i)n,pΦ
(i)
p · l̂q = [C](i)q {e}(i)n (23)

where l̂q is the unit vector along the direction of potential descending at the
q-th port. Since the current unknowns in the circuit subsystem are ICKT

instead of JCKT, (15) is rewritten for uniform as

(
j(i)

)
(n,q,k)

=
ICKT
n,q

w

∫
∂Ωi,port

Φ
(i)
k · l̂qdS = ICKT

n,q G
(i)
q,k. (24)

The coupled local system equation can be established by combining (20),
(23) and (24) and formulated as

F (xn+1) = bn (25)

where

xn+1 =
[
e
(i)
n+1 V CKT

n+1,q ICKT
n+1,q

]T
(26)

F (xn+1) =

⎡
⎢⎣
[
M

(i)
e

]
0 ΔtG

(i)
q /4

0 [Y ]q −[B]q
[C](i)q −[B]Tq 0

⎤
⎥⎦
⎡
⎢⎣ e

(i)
n+1

V CKT
n+1,q

ICKT
n+1,q

⎤
⎥⎦+

⎡
⎣ 0

ICKT,nl
n+1,q

−V ind
n+1

⎤
⎦ (27)
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bn =

⎡
⎣ bEM

ICP
n,q

0

⎤
⎦ (28)

with

bEM = M (i)
e e(i)n +Δt

[(
S(i)

e − F
(ii)
eh

)
h
(i)

n+ 1
2

− ICKT
n,q G(i)

q /4 + F
(ii)
eh h

(j)

n+ 1
2

]
.

(29)

The overall dimension of the coupled system in (25) is equal to n
(i)
e +

NCKT. Compared with the globally coupled FEM system, this system using
DGFETD is very small. Note that the minus sign in front of the [B] matrix
is introduced since the current direction in our method is opposite to that
defined in the standard MNA formulation. To tackle the instability issue
caused by non-linear elements, the standard Newton-Raphson method is
used with trivial computational cost due to the coupled small matrix system.

3 Numerical results

In this section, a parallel plate waveguide terminated by different lumped
networks is employed to validate the proposed algorithm.

Figure 1: Geometrical structure of a parallel plate waveguide used to verify
the proposed algorithm.

In the first example, a 1 cm waveguide is driven by a Thévenin voltage
source as shown in Fig. 1 and terminated with a lumped network com-
prised of only linear lumped elements as shown in Fig. 2 is investigated.
Two lumped ports are defined at the driven source and the load end of the
waveguide, respectively. The Thévenin voltage source is a first order dif-
ferential Guassian pulse. The amplitude and phase of the S parameter are
presented in Fig. 3 and Fig. 4, respectively. The calculated input impedance
is shown in Fig. 5. It can be explicitly noted that very good agreements are
achieved from DC to 10GHz.



96 A hybrid electromagnetics-circuit simulation method

Figure 2: A single port lumped network containing only linear elements. The
correspondingR, L, and C values are: R1 = 75Ω, R2 = 100Ω, R3 = 376.7Ω,
R4 = 100Ω, L1 = 10nH, L2 = 1nH, C1 = 1pF, C2 = 0.01 pF.

Figure 3: Magnitude of S11 and S21 calculated from the proposed hybrid
EM-circuit simulator and ADS.

Figure 4: The phase of the S parameter. (a) Phase of S11; (b) phase of S21.

In the next example, the same parallel plate waveguide driven by a TEM
wave is studied. It is loaded with silicon diodes (iD(t) = I0[e

VD(t)/V0 −
1], I0 = 10−14 A, V0 = 0.026V) as shown in Fig. 5. Since this diode is a
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Figure 5: The real part (a) and the imaginary part (b) of the input
impedance.

nonlinear device, the standard Newton-Raphson method is applied to handle
the potential instability introduced by this non-linearity. The incident wave
is a sinusoidal source oscillating at 2.5 GHz. The amplitude of this sinusoidal
source is gradually increased, and the time domain voltage at the terminal
of the diode in Fig. 6(a) is presented in Fig. 7(a) without any instability
problem. It can be clearly noted that the maximum voltage at the diode
terminal is around 0.7V, which complies with the theory.

Finally, the diode pair in Fig. 6(b) is used to terminate the wave guide.
This diode pair is capable of limiting the output voltage and is called the
clamping diode. Theoretically, the output voltage should be clamped be-
tween -0.7 V and 0.7V. To verify the validity of the proposed algorithm, the
output voltage at this diode pair is shown in Fig. 7(b). The calculated result
completely agrees with the theory.

Figure 6: Diode and diode pair are used to validate the capability of the
proposed algorithm to handle non-linear elements.
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Figure 7: The time domain voltage at the terminal of the diode correspond-
ing to excitations with different amplitude. (a) Output voltage of the diode
in Fig. 6(a). (b) Output voltage of the clamping diode in Fig. 6(b).

4 Conclusion

In this work, a hybrid EM-circuit simulator based on the DGFETD and
MNA is developed to model single port lumped networks. The interactions
between the EM and circuit systems is achieved through a lumped port re-
siding over a rectangular surface. Due to the local property of the DGFETD,
the resultant coupled EM-circuit system is quite small. Thus, it can be solved
with negligible cost even non-linear elements are included in the lumped
network. To suppress the instability issue, the standard Newton-Raphson
method is used to solve the non-linear system. The proposed algorithm is
validated by numerical examples.

Ongoing work includes the modeling of multi-port lumped networks us-
ing DGFETD and MNA. These multi-port lumped networks contain either
arbitrarily complex linear or non-linear devices such as power amplifiers,
oscillators and so on.
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Abstract

Variational data assimilation, also sometimes simply called the ‘ad-
joint method’, is used very often for large scale model calibration
problems. Using the available data, the uncertain parameters in
the model are identified by minimizing a certain cost function that
measures the difference between the model results and the data.
A variational scheme requires the implementation of the adjoint of
(the tangent linear approximation of) the original model which is
a tremendous programming effort, that hampers new applications
of the method. Recently a new ensemble approach to variational
inverse modelling using Proper Orthogonal Decomposition (POD)
model reduction has been proposed that does not require the im-
plementation of the adjoint model. Using an ensemble of forward
model simulations an approximation of the covariance matrix of the
model variability is determined. A limited number of leading eigen-
vectors of this matrix are selected to define a model sub space. By
projecting the original model onto this subspace an approximate
linear model is obtained. Once this reduced model is available the
minimization process can be solved completely in reduced space
with negligible computational costs.

Schemes based on the well-known Kalman filtering algorithm are
also used recently for inverse modeling. The last years a num-
ber of ensemble based algorithms have been proposed, e.g., the
Ensemble Kalman filter (EnKF), the Reduced Rank Square Root
filter (RRSQRT) and the Ensemble Square Root filter (ESRF). Al-
though introduced for linear state estimation, these new algorithms
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are able to handle nonlinear models accurately and, therefore, are
very attractive for solving combined state and parameter estima-
tion problems. It has been shown recently that the so-called sym-
metric version of the ESRF introduces the smallest increments and,
therefore, is in most applications more accurate then the original
version of this algorithm.

1 Introduction

Computational models for pulsed EM fields usually contain a number
of uncertain parameters that have to be identified using measurements. In
this way a more accurate reconstruction of the dynamic behavior of the
model state can be obtained. Variational data assimilation schemes (see [1])
have often been used for model calibration, e.g., [2]. These methods aim
at adjusting a number of unknown parameters on the basis of some given
observations. One first defines an objective function, which, for any model
solution over the assimilation interval, measures the misfit between that
solution and the available observations. Then, the new model solution is
obtained by minimizing this objective function. To obtain a computationally
efficient procedure, this objective function is minimized with a gradient-
based algorithm that determines the gradient of the given problem. Usually,
it requires the implementation of an adjoint model, which requires a huge
programming effort even with the use of an adjoint compiler.

Proper orthogonal decomposition (POD) is a model reduction method
considered as an application of the SVD to the approximation of general
dynamical systems [3]. The method was originally developed by [4] and
has been extensively used and successfully applied in many fields like im-
age processing, signal processing, data compression, oceanography, chemical
engineering and fluid mechanics [5–7]. The POD has recently been applied
successfully in variational data assimilation [8, 9]. In the presented reduced
order approach a set of snapshot vectors of forward model simulations is used
to determine an approximation of covariance matrix and a small number of
eigenvectors of this matrix are used to define a model subspace. By pro-
jecting the original model onto this subspace, an approximate linear model
is obtained. The controllable subspace obtained is low rank and hence an
efficient reduced model is obtained. Once the reduced model is available,
its adjoint can be implemented easily and the minimizing problem is solved
completely in reduced space with very low computational cost [10].

Kalman filtering is a well known method for state estimation. The stan-
dard Kalman filter algorithms however would impose an unacceptable com-
putational burden for systems with a very large state dimension. In
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order to obtain a computationally efficient filter new algorithms have been
introduced. The last years a number of ensemble based algorithms have
been proposed, e.g. the Ensemble Kalman filter (EnKF), the Reduced Rank
Square Root filter (RRSQRT) and the Ensemble Square Root filter (ESRF).
Ott et al. [11] and Sakov et al. [12] showed that the symmetric version of
the Ensemble Square Root Filter has the property that the analysis incre-
ments are smallest. Recently [13] also introduced the symmetric version of
the RRSQRT algorithm and shown that in many different experiments the
symmetric versions of both the ESRF as the RRSQRT filter are the most
accurate algorithms. The ESRF algorithms are able to handle nonlinearities
very well. As a result they can also be used for parameter estimation by
simply adding the uncertain parameters to the state vector. Ensemble type
algorithms can be implemented very easily also in case of complex large scale
systems. Furthermore it is also possible to take into account statistical er-
rors in the underlying model. Because of these advantages ensemble Kalman
filters have become a very attractive inverse modeling technique.

In this paper we will discuss ensemble approaches to inverse modeling.
Here we focus on inverse modeling problems with a very large number of un-
certain parameters. All the algorithms we describe are “adjoint-free” meth-
ods and are very easy to implement in combination with complex large scale
numerical modeling systems. In Sections 2, 3 and 4 we briefly explain the
procedure required for the construction of different projection based reduced
methods, the classical inverse modeling methods, define the procedure for
collecting snapshots and the basis vectors (patterns) required for simulation
of reduced model in the context of variational data assimilation. To illus-
trate the procedure in the Section 5 numerical results obtained by applying
the procedure to the 2D-advection diffusion model to estimate a space vary-
ing diffusion are presented. In Section 6 we briefly summarize the ensemble
Kalman filter approach to inverse modeling and illustrate this approach with
a similar 2D-advection diffusion model.

2 Reduced order modeling

Given a dynamical system defined by

x(ti) = Aix(ti) +B u(ti), y(ti) = H x(ti) (1)

where A ∈ Rn×n, B ∈ Rn×k, H ∈ Rq×n, the aim of reduced order modeling
is to find a projection Π = V UT with UTV = Ir where r < n, to obtain the
reduced order dynamical system as follows

x̂(ti) = UTAiV x̂(ti) + UTBu(ti), y(ti) = HV (x̂(ti)) (2)
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whose trajectories x̂ = UTx, evolve in an r−dimensional subspace. If V =
U , we have Galerkin (orthogonal) projection and oblique (Petrov-Galerkin)
projection otherwise.

2.1 Proper Orthogonal Decomposition

The POD consists in the orthogonal decomposition of the correlation
associated with the state variable of the system and its representation, opti-
mal in the least square sense, with respect to the orthonormal, complete set
of the eigenfunctions of the correlation operator. The POD is an optimal
technique of finding a basis, which spans an ensemble of data, collected from
an experiment or a numerical simulation of a dynamical system, in the sense
that when these basis functions are used in a Galerkin procedure.

We start by collecting a set of s snapshots of some physical process taken at
position x

xi = {xi1, xi2, . . . , (xin) , i = 1, 2, . . . , s} . (3)

Define the vector xb of background state and correct each snapshot vector
so that

ei = xi − xb. (4)

These corrected snapshots are arranged in matrix E which denotes the new
ensemble. We define an eigenvalue decomposition problem of discrete co-
variance matrix Q = E ET as:

Qpj = λjpj , j = 1, 2, . . . , n. (5)

The dimension n can be of the order of 108, and even larger, so direct
eigenvalue decomposition of Q is not feasible. One can however solve the
reduced s× s eigenvalue problem

ETEψk = λkψk, k = 1, 2, . . . , s (6)

where the eigenvalues λj are the same as in (5). We can choose the eigen-
vectors ψk orthonormal and give POD modes (patterns) by

pk = Eψk/λk. (7)

The number of patterns should be chosen in such a way that they are close
to capture 100% relative energy.
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2.2 Balanced POD

Balanced POD is an approximation to balanced truncation. The idea
has recently applied by [14]. The main idea behind balanced truncation is
to consider both inputs and outputs of the system (1), i.e., considering both
controlability and observability, while determining which states to keep in
the reduced model structure. A controllable subspace is the space that can
be obtained with zero initial state and a given input u(t). It is similar to
the POD dataset of snapshots given in Section 2.1 obtained by simulation
of original model.

Wc = EET. (8)

The extra computation in this method is the computation of observability
gramian (Wo). With no external input, the observable subspace consists of
those states which produces nonzero output y(t). For this we compute the
impulse responses of the adjoint system based on original system (1).

ż(ti) = Az(ti) +Huz (9)

So we need to solve the adjoint system as many time as the number of
outputs. If the number of outputs is large then its computationally expen-
sive, so we follow the following procedure:

a) Project the snapshots E = {e1,e2, . . . ,es} on observation the space.

b) Obtain r dominant POD modes of this projection.

c) Instead of solving the adjoint system for q outputs we need to solve it
for r dominant modes to get a similar matrix F as in case of POD
data set

Wo = F FT (10)

Balanced POD modes are the dominant eigenvectors of the product of
two gramians, which are obtained by singular value decomposition (SVD) of
the matrix (F ∗S).

The use of balanced POD for parameter estimation requires the adjoint
of the tangent linear approximation of the forward model operator, but does
not require the Jacobian with respect to the parameters (as in the case
the full adjoint method). Sometimes the Jacobian with respect to states is
available as part of the numerical scheme of the original forward model.
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3 Inverse modeling

The idea of parameter estimation is the estimation of uncertain model
parameters by minimizing the measure of residuals. Let γk be the estimate
variable to be determined, then we can define a nonlinear discrete model for
the state vector x as

X(ti) = Mi [X(ti−1), γk] , Yi = H [X(ti)] + v(ti) (11)

where Mi is a nonlinear and deterministic dynamics operator that includes
inputs and propagates the state from time ti−1 to ti. Here H is an operator
that maps the model fields on observation space. v(ti) is a white Gaussian
observation noise process with zero mean and covariance matrix Ri. The
objective function J to be optimized is defined based on model-data misfit
as

J(γk) =

s∑
i=1

{Y (ti)−H[X(ti)}TR−1
i {Y (ti)−H[X(ti)]} (12)

The minimization of the objective (cost) function is often based on quasi-
Newton method. These methods require the computation of the gradient
(∇J) of the cost function. In most situations it is possible to numerically
determine the gradient through adjoint method efficiently. The principle of
adjoint model is based on systematic use of chain rule of differentiation. It
needs one forward simulation and a second additional simulation backward
in time with the adjoint model. If λ(ti) is the solution of the adjoint model,
then the gradient ∇J of the cost function with respect to estimate variable
γk is

∇J =
∑
i

−λ(ti)
T ∂M [X (ti−1)]

∂γk
. (13)

The main hurdle in the use of adjoint method is its implementation, as
it requires huge programming effort. Also the adjoint equation need to be
integrated backward in time, the determined states of the original problem
must be stored for all time steps. The memory access will therefore be huge
for largescale problems, and is therefore major hurdle in applying the adjoint
model to compute the gradient of J .

4 Inverse modeling using a reduced model

An approximate linear reduced model inspired by the work of [10] in vari-
ational data assimilation is based on the principle of POD model reduction
technique. A set of snapshot vectors is generated from the original model.
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Reduced model operates on the dominant eigenvectors generated from the
set of snapshots. The reduced model used here includes dependency on
estimated parameters γk. The snapshot vectors of the original model pro-
vide sensitivity with respect to γk. A single snapshot vector is obtained by
perturbing γk as

ek(ti) =
∂Mi

[
Xb (ti−1) , γk

]
∂γk

(14)

where Xb is the background state for which the corresponding estimate vari-
able γk is linearized. The number of snapshot vectors depends on the num-
ber of time-steps and number of estimate variables. We follow the procedure
given in Sections 2.1 or 2.2 to calculate the basis of the leading eigenvectors.
The total number of vectors in basis depends on the accuracy required for
the reduced model. If X̂ is the approximate linearized state, then we can
write

X̂(ti) = Xb(ti) + V ξ(ti) (15)

with ξ(ti) being the reduced state vector

ξ (Δγk) = Ni

[
X̂ (ti−1) ,Δγk

]
+NγΔγk. (16)

The dimension on which reduced model operates is (r + u), where r is the
number of basis vectors. N and Nγ are reduced dynamics operators com-
puted as

Ni = UT ∂Mi

∂Xb (ti−1)
V (17)

Nγ = UT

(
∂Mi

∂γ1
, . . . ,

∂Mi

∂γu

)
(18)

The value of the approximate objective function Ĵ is obtained by correcting
the observations Y (ti) for background state Xb(ti) which is mapped on the
observational space through a mapping H and for the reduced model state
ξ(ti,Δγ) which is mapped to the observational space through mapping Ĥ
with Ĥ = HP .

Ĵ (Δγk) =
∑
i

{
Y (ti)−H

[
Xb(ti)

]
− Ĥξ (ti,Δγ)

}2
(19)

Let λ̂(ti) be a reduced adjoint state, then the gradient of the approximate
objective function 19 is given by

ΔĴ

Δγk
=
∑
i

−λ̂(ti)
T∂ξ(ti)

∂Δγk
. (20)
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Once the gradient is obtained, the reduced model is used again to compute
the Ĵ along the direction of the gradient. As reduced model and its adjoint
model both are low dimensional and have linear characteristics the amount
of simulation time is negligible. In Fig. 1 a flowchart of the inverse modelling
process is given.

Initial Parameters

Original Model

Gradient

Adjoint Model

Initial Parameters

Snaphots

Gradient

Optimized ParametersOptimized Parameters

Reduced Model Based
on POD modes

Reduced Adjoint Model

Updated Parameters

Initial Parameters

Snaphots

Reduced Model Based

Reduced Adjoint Model

Gradient

Updated Parameters

Optimized Parameters

on BPOD modes

a b c

Figure 1: Flow chart of inverse modeling process by (a) classical method;
(b) POD reduced method; (c) BPOD outer projection method.

5 Numerical experiment

5.1 The model

We consider the advection-diffusion of concentration c(x, y, t) for the
transport of pollutant in two space dimensions. The evaluation of c with
square domain [0, 20] × [0, 20] gives

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
=

∂

∂x
ϑ
∂c

∂x
+

∂

∂x
ϑ
∂c

∂x
+ S (21)

where ϑ contains diffusion coefficient, [u, v] is the velocity field which is given
and constant with respect to time and S is the source term. A solution to
the partial differential equation is obtained by imposing boundary conditions
and applying Euler-time stepping to approximate the time derivative, the
second derivatives are approximated with the central finite difference, while
the upwind scheme is used for the first order spatial derivatives. Initially
the concentration is zero for the whole model domain.
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We have applied the reduced model approach describe above to the 2D
advection diffusion model 21 to estimate the diffusion coefficient. The experi-
ments are performed for three different cases, two with POD based reduced-
order method and the last case compares the BPOD method with POD
method. The original model is simulated for 50 time-steps. The estimate
variable γk is effected by the parameter ϑ. A uniform source term is intro-
duced at two grid points during the course of simulation.

5.2 Case 1

Here we have considered diffusion to be more dominant than advection.
The number of parameters estimated for this case is two. A set of observa-
tions is obtained at 2 different grid points in the model domain. The estimate
parameters γ1 and γ2 effect two different zones within model domain. The
true value for both parameters is γt = 0.18. Initially, γ1 = 0.12 and γ2 = 0.2.
For these initial parameters, a set of snapshot vectors is generated and we
are able to form a basis consisting of only 8 vectors that captured 99.99%
relative energy. So a reduced model is built using these basis vectors. With
this reduced model, approximate objective function Ĵ is minimized and new
values of estimate variables are found at γ1 = 0.1641 and γ2 = 0.1944. This
process is repeated several times by running the original model using the new
set of updated parameter values.Table 1 shows the results of minimization
of two estimate variables.

Table 1: The results for minimization of two estimate variables (Case 1).

β γ1 γ2 J Ĵ Rn

initial 0.12 0.20 0.8434 0.0504 10

1 0.1641 0.1944 0.0865 0.0172 10

2 0.1751 0.1899 0.0167 0.0056 10

3 0.1830 0.1783 0.0035 4.5× 10−4 10

6 0.17998 0.17969 1.08 × 10−5 4.77 × 10−6 10

5.3 Case 2

Here, we have applied the BPOD outer projection procedure to get the
basis of reduced model and compare results with POD and BPOD based
reduced-order models. The whole model domain is divided into two
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parameter zones. A set of observations is obtained at every other grid point,
i.e., 200. The initial values of the parameters are same as in previous case.
Snapshots are collected by running the original model and applying BPOD
(outer projection method) explained in Section 2.2, to obtain basis U and V .
To quantify the performance of both reduced models we have used as metric
the root mean square error. This is obtained by first taking the full order
approximation results and the corresponding reduced order results of the
forward run within the inner loop of variational data assimilation. Table 2
shows the error in full and reduced order approximations (POD, BPOD and
BPOD with outer projection). It can be seen from table that error in BPOD
is less than that of POD reduced model. Outer projection method with only
12 balancing modes gives the same result as compared to full BPOD with
200 observations.

Table 2: Error in full and reduced order approximations.

No. of
modes

5 6 7 8 9 10

POD 0.315 0.169 0.167 0.095 0.091 0.063

BPOD 0.237 0.141 0.135 0.088 0.086 0.062

BPOD
(12 OP)

0.238 0.141 0.135 0.087 0.086 0.063

6 Ensemble Kalman filter

Let us now assume that modeling techniques have provided us with a
nonlinear stochastic state space representation of the form

Xi+1 = Mi [X(ti)] +Biu(ti) +Giw(ti) (22)

where Xi is the system state, ui is the input of the system, Mi is a nonlinear
function, and Bi is an input matrix. A white Gaussian system noise process
Wi with zero mean and covariance matrix Q(i) is introduced to take into
account the model uncertainties. G(i) is the noise input matrix. The initial
state X0 is assumed to be Gaussian with mean X0 and covariance matrix
P0. The initial condition, the system and measurement noise processes are
all assumed to be independent of each other. It can be shown that the model
(22) is Markov.
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The standard Ensemble Kalman Filter (EnKF) introduced by [15] is a
Monte Carlo approach to the Kalman Filter. It is based on the represen-
tation of the probability density of the state estimate by a finite number
of randomly generated system states and is able to handle the nonlineari-
ties of the models. In the first version of the EnKF, all ensemble members
were updated with the same observations and as consequence, the analyzed
covariance matrix was systematically underestimated. Therefore, now an in-
dependent set of perturbed observations obtained by adding random noise to
the actual measurements is used in the analysis step to prevent the collapse
of the ensemble [16].

The Ensemble Kalman filter is based on a finite number N randomly
generated system states

ξi(i− 1|i− 1), i = 1, . . . , N. (23)

The optimal estimate and the square root of the covariance matrix of the
estimation error are now given by

X(i− 1|i− 1) =
1

N

N∑
i=1

ξi(i− 1|i− 1) (24)

L(i− 1|i− 1) =
1√

N − 1

[
ξ1(i− 1|i − 1)−X(i− 1|i− 1) . . .

ξN (i− 1|i − 1)−X(i − 1|i− 1)
]T

(25)

The square root L(i−1|i−1) defines an approximation of the covariance
matrix P (i− 1|i− 1) with rank N

P (i− 1|i− 1) =
1

N − 1
L(i− 1|i− 1)L(i − 1|i − 1)T. (26)

P (i− 1|i− 1) is however never actually computed. Using the algorithm first
the initial ensemble of state vectors is generated with mean x0 and covariance
matrix P0. Then for updating the ensemble, realizations of the system noise
and measurement noise processes are generated too. The Ensemble Kalman
filter algorithm can be summarized as follows:

Time update:

ξi(i|i− 1) = f [ξi(i− 1|i − 1), i− 1] +G(i)wi
i (27)

X(i|i − 1) =
1

N

N∑
i=1

ξi(i|i− 1) (28)
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L(i|i− 1) =
1√

N − 1

[
ξ1(i|i− 1)−X(i|i − 1) . . .

ξN (i|i − 1)−X(i|i − 1)
]T

(29)

Measurement update:

Ki = L(i|i−1)L(i|i−1)THT
i

[
HiL(i|i−1)L(i|i−1)THT

i +Ri

]−1
(30)

ξi(i|i) = ξi(i|i− 1) +Ki

[
Yi −Hiγi(i|i − 1) + vii

]
(31)

The time update equation is for most applications computationally dom-
inant. As a result the computationally effort required for the Ensemble
Kalman filter is approximately N model simulations. The ensemble Kalman
filter does not suffer from the curse of dimensionality. Even for very large
state dimensions 50–200 ensemble members are often enough to obtain reli-
able results. However the standard deviation of the statistical errors in the
state estimate converges very slowly with the sample size. This is one of the
very few drawbacks of this Monte Carlo type approach. Note that for the
time update only simulations with the original nonlinear model are used.
The tangent linear model is not required.

An alternative way to solve the update step of the ensemble-based filter
is represented by the deterministic analysis that is not sensitive to the obser-
vational sampling errors associated with the use of perturbed observations.
This method referred to as ensemble square root filter (ESRF) is placed in
a unified framework by [17,18].

It is possible to classify the ESRF into three subclasses as the cycle
of alternating forecast and analysis steps are performed: stochastic ESRF,
where both steps are influenced by sampling for each ensemble member using
a pseudo-random generator, semi-deterministic ESRF, where only the fore-
cast step is based on sampling, and deterministic ESRF, where both steps
of the assimilation cycle are deterministic. The first two classes contain the
ensemble-based filters. An example of a deterministic ESRF is given by the
Reduced Rank Square Root (RRSQRT) filter introduced by [19].

Using the following notations

Y = HL(i|i) (32)

S = Y Y T +R (33)

the updated covariance matrix becomes

L(i|i)L(i|i)T = L(i|i− 1)
(
I − Y TS−1Y

)
L(i|i− 1)T. (34)
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The solution of equation (34) is obtained as

L(i|i)L(i|i − 1)T (35)

where T is a matrix that satisfies

TTT = I − Y TS−1Y. (36)

It can easily be shown that there is a unique symmetric positive definite
solution to equation (36) defined as the square root of the symmetric positive
definite matrix in the brackets.

T s =
[
I − Y TS−1Y

]1/2
. (37)

By using the eigenvalue decomposition, the matrix T s has the following form

T s = CΛ1/2CT. (38)

Following Ott et al. [11] and Sakov et al. [12], we will refer to T s as the
symmetric solution. The symmetric algorithm defined above introduces the
smallest analysis increments for an arbitrary compatible norm. This prop-
erty is one of the main reasons of the good performance of the symmetric
ESRF obtained by [11,12].

With a formal definition, an ESRF is an ensemble filter in which the
analysis ensemble is updated by using an ensemble transform matrix (ETM)
T which satisfies Eq. (36). Consequently, every semi-deterministic filter
belongs to the class of the ESRF. In addition, the set of all solutions T
which characterize the ESRF class is described in terms of the orthogonal
matrix group O(N). Then, a general form of T that satisfies Eq. (36) is

T = T sU (39)

where T s is the symmetric solution and U is an arbitrary orthonormal ma-
trix. The ESRF method encompasses filters with a ETM which matches
the exact analyzed covariance, but the update perturbations could change
the ensemble mean. An example is provided by the Ensemble Transform
Kalman Filter (ETKF) introduced by [20] whose ETM denoted by T o is
obtained by the multiplication of (38) by the orthogonal matrix C

T o = T sC = CΛ1/2 (40)

We will refer to the solution (40) as the one-sided formulation of the ESRF.
A random rotation U r was added to the solution of Eq. (40) to prevent the
ETKF tendency of producing high variance outliers [21]

T = T sU r (41)
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It has been found by [18, 22] that the statistics of the update ensemble
were still inconsistent with the actual error. A valid analysis ensemble should
satisfy the zero-centered condition

L(i|i)1 (42)

where 1 is the vector with all elements being 1. Due to the fact that the
forecasted ensemble perturbations do not perturb the ensemble mean, a suf-
ficient condition for an analyzed ensemble to preserve the ensemble mean is
that the ensemble transform matrix T satisfies (up to a scalar constant λ)
the following mean-preserving condition

T1 = λ1. (43)

We will refer to an ESRF with the ETM satisfying Eq. (43) as an unbiased
ensemble square root filter (UESRF). Sakov et al. [12] and Wang et al. [23]
have shown that the symmetric transformation does not introduce a bias.
Therefore, for providing a mean-preserving solution, it is sufficient to find
a rotation matrix Up such that the vector 1 is an eigenvector of Up. To
obtain an arbitrary orthogonal transformation with the desired propriety,
we need to construct an orthonormal basis B whose first orthonormal vector
is 1/N1/2 by using the Gram-Schmidt procedure. Consequently, the required
rotation matrix has the following form

Up = B

(
1 0
0 U1

)
BT (44)

where U1 is a random orthonormal matrix obtained from the singular value
decomposition of a generated pseudo-random matrix. The ESRF with the
matrix transformation T s is unbiased and, if the vector 1 is an eigenvector
of a rotation matrix Up, the new transformation matrix written as

T = T sUp (45)

is a mean-preserving solution. The ETM from (45) defines an UESRF algo-
rithm.

Much of the research for square root filtering has been devoted to the
analysis step. For strongly unstable dynamics this can be motivated, but
for many applications also the system noise plays an important role. In the
ESRFs the system noise is added with the introduction of random num-
bers, but as in the analysis, this scheme introduces sampling errors. To
avoid the sampling errors, several approaches have been proposed, e.g., the
reduced-rank square root (RRSQRT) filter by [19] or its extensions [24]. The
RRSQRT algorithm belongs to the deterministic (both forecast and analysis
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are deterministic) methods. It is an ensemble version of the famous extended
Kalman filter. It is very efficient for weakly nonlinear problems. However, for
strongly nonlinear estimation problem like we generally have in parameter
estimation problems, the ESRF seems to be the best choice.

The numerical experiments in this section are intended to show the per-
formance of the four semi-deterministic filters obtained by using different so-
lutions of the Eq. (36). Our data assimilation experiments use a 2D pollution
model [24], based on the 2D advection diffusion equation for the transport
of a pollutant (see Eq. (21)).

A reference simulation was performed by inserting randomly generated
emissions at five grid cells (see Fig. 2). Observations are measured in twelve
locations of the domain (see Fig. 2) and they are simulated using the true
concentrations to which a zero mean Gaussian observation noise was added
with standard deviation 0.1. In the assimilation experiment the initial emis-
sion is assumed to be zero resulting in a zero concentration field. Using the
data the emission parameters are reconstructed and the concentration can
be estimated.
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Figure 2: Reference simulation of concentrations and wind velocity. Emis-
sion sources and data locations are represented by diamonds.

In Fig. 3 the root mean square error of the filter results are shown for the
various algorithms. Here the error is determined at a certain time by com-
paring the filter result with the exact result over the entire spatial domain.
From the results it is clear that the symmetric versions of the algorithms are
the most accurate. For more results the reader is referred to [13].
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Figure 3: Average root mean square error of the concentration over 500 time
steps and 10 realizations as function of ensembles and modes, for the ESRFs
filters using an observational standard deviation error of 1.0. The standard
deviation between the independent simulations is represented by the grey
bands.

Although originally developed for state estimation Ensemble Kalman fil-
ter is also used for large scale combined state and parameter estimation prob-
lems. The symmetric version of the ESRFs which has the smallest analysis
increments over all semi-deterministic filters provides the more accurate solu-
tion compared to one-sided variant, random rotations and mean-preserving
random rotations. What seems consistent is that the symmetric ESRF is
always among the best performing algorithms of the 4 ESRFs in tests per-
formed by [13]. From these experiments and those reported by other authors
and because of the attractive theoretical properties, we conclude that the
symmetric ESRF is likely to provide the most accurate results for a large
number of applications when compared to other ESRFs. In addition, the
computational requirements are not significantly larger for the symmetric
ESRF, nor is it difficult to implement.

In reservoir engineering the Ensemble Kalman filter is used very often for
estimation the permeability field in large scale reservoir models [25]. Filter
divergence might be a problem in case of a large amount of data. This can be
reduced however using localization techniques. For more details the reader
is referred to the review paper [25].
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7 Conclusions

In variational data assimilation, it is necessary to build an adjoint model
for the efficient computation of the gradient. This adjoint model is difficult
to implement for large-scale systems. In this work we have developed a
method of simplifying this problem using a projection based POD model
reduction method. The method approximates the full dynamical system
while retaining its essential properties. Numerical experiments have been
performed with this method to estimate the diffusion coefficient in a 2D
advection-diffusion model.

Balancing is also applied using the outer projection method, to obtain
an approximate balanced truncation, so that the basis vector matrices also
capture information of the observable subspace. Results show that com-
putationally efficient balanced reduced model can be obtained using outer
projection. Balancing does however require the Jacobian with respect to the
state (not with respect to the parameters).

The Ensemble Kalman filter is very suitable for nonlinear systems and
can easily be used for combined state and parameter estimation. This ap-
proach is very easy to implement and it is also possible to include a statistical
model error. The symmetric version of the ensemble square root filter has
the smallest analysis increments over all semi-deterministic filters. From this
theoretical result and from experiments reported in literature, we conclude
that the symmetric ESRF is likely to provide the most accurate results for
a large number of combined state and parameter estimation problems.
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Abstract

This contribution presents the fabrication and measurements of the
leaky lens antenna integrated with a cryogenically cooled Kinetic
Inductance Detector, in order to achieve an ultra sensitive THz re-
ceivers over a bandwidth ranging from 0.15GHz to 1.5THz. The
system has been manufactured and characterized in terms of power
efficiency, and radiation pattern properties. The agreement be-
tween the expectations and the measurements is excellent already
at this first attempt. These measurements demonstrate the manu-
facturability and repeatability at THz frequencies of the properties
of the leaky lens antenna concept.

1 Introduction

Reflector systems with wideband antenna feeds and arrays receiving
growing interest for applications in the THz frequency ranges such as radio
astronomy and space observation [1]. For THz space observation, dielectric
lens antenna arrays are typically used in focal plane array configurations,
due to their easy integration. However, the typical antenna solutions used
as feed of dielectric lenses are efficient only over a narrow band [2]. An im-
proved solution is the leaky-lens antenna recently proposed in [3], which can
achieve multi-octave bandwidth. This antenna consists of a leaky-wave slot
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Figure 1: Dielectric lens fed by single leaky-wave slot.

kept at an electrically small distance from the dielectric lens (Fig. 1), in order
to obtain directive radiation inside the dielectric and, consequently, efficient
illumination of the lens. The leaky-lens was experimentally proved to be non-
dispersive and highly efficient over a wide bandwidth in the microwave [4].
Standalone demonstrations of antennas, is typical in the microwave domain.
They can be useful, but not conclusive, in the THz regimes due to the im-
portance of parasitic effects that come in when the actual connection of a
micro-metric antennas and receivers are eventually realized. In order to be
able to characterize an antenna efficiently in the THz frequency domain it is
essential to co-design it together with the receiver it is intended to operate
with.

This contribution represents the first demonstration of the feasibility of
the leaky lens antenna concept at THz frequencies. The antenna is integrated
with a cryogenically cooled Kinetic Inductance Detector (KID) [1, 5], so
that the two of them would function as an ultra-sensitive receiver over a
bandwidth ranging from 0.15GHz to 1.5THz. KIDs had previously shown
photon noise limited performance at frequencies of 350GHz in a narrow
band [6] in an architecture similar as the one presented here, with however
a narrow band twin slot antenna [2]. The present system with KIDS and
Leaky Lens Antenna has been manufactured and characterized in terms of,
radiation pattern properties at several frequencies.

2 Manufacturing

The functioning of KID detectors as microwave resonators that function
as THz power detectors is discussed in [1]. The KID resonator (central in
Fig. 2) is coupled to a GHz Transmission line on one side (top portion of
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Figure 2: Micrograph from front side with front illumination. The slot is is
4mm long.

Fig. 2 and the to the THz antenna on the other side (long slot in Fig. 2).
The KID resonator is made of a 200 nm thick Tantalum film and provides a
virtually frequency independent THz power sensitivity for frequencies above
the gap frequency of Tantalum ( 320GHz). The key difficulty in manufac-

Figure 3: Sample fabrication: finished chip seen from the backside.

turing the antenna was the necessity to print it on a thin 3·m membrane. In
the present experiment, we used a SiN membrane deposited on both sides
of a Si wafer using PECVD. Using standard lithographic techniques and
KOH wet etching of the Si we fabricated a membrane without Si support
of 5 × 5mm, on the rest of the chip the 525μm thick Si was left in place
below the SiN. Fig. 3 shows the finished chip and in the center the mem-
brane can be observed as a small depression in the thicker wafer. A small
(h = 35, μm) spacing between the slot antenna and the dielectric lens was
achieved by laser etching a 30μm deep suppression in another high resistiv-
ity silicon wafer of 350μm thick (the ‘back-short’). After clamping the chip
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in its holder and connecting the feed line via wire bonds to the coax feeds,
we glued the spacer chip on top of the detector chip with cyanoacrylate glue,
which is present only at the sides of the spacer chip, not behind the antenna
feed. On top of the back-short chip we then mounted the Si lens, aligned to
the center of the feed, creating the structure shown in Fig. 4.

Figure 4: Chip inside the sample holder and position of the lens before
gluing.

3 Measurements

The entire system was then located in inside a liquid He cryostat and
thermally anchored to the cold stage of a He3 cooler, cooling the detector
to 300mK. In the experiment the lens is facing a window, equipped with IR
blockers at 77K and 4K and a low pass filter with a cut-off at 1.2 THz at
4K. A hot load (2000K), with a few millimeter aperture and equipped with
changeable band pass filters was used as THz source and moved at a distance
of approximately 20 cm from the lens. Three different filters were located
between the source and the receiver: 1) 350GHz pass band, 2) 650GHz
pass band 3) 850GHz pass band. These filters provide direct information
on frequency performance of the receiver. Without any filter the receiver
detects within the 1.2THz bandwidth given by the filter on the cryostat
window. E−plane radiation patterns derived from the responsivity of the
KIDs as the source was moving in front of the cryostat window are shown for
the three investigated frequencies (350GHz, 650GHz and 850GHz) in Fig. 5
(a), (b) and (c), respectively, where they are compared with the pertinent
simulation results, obtained using an in house developed tool.
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a b

c

Figure 5: Comparison betwene the measuremnts and caculations for
E−plane radiation patterns at three different frequencies: (a) 350GHz, (b)
650GHz and (c) 850GHz.
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Abstract

The loop-to-loop pulsed electromagnetic field wireless signal trans-
fer is investigated with a view on its application in wireless digital
information transfer. Closed-form expressions are derived for the
emitted magnetic field and for the open-circuit voltage of the re-
ceiving loop in dependence on the mutual orientation of the loops
and the characteristics of the feeding pulse. Numerical results are
given for some configurations that are representative for microelec-
tronic wireless signal transfer. In them, the transmitting loop is
excited with a monocycle pulse electric current and with a propi-
tious, causal, ultra wide-band pulse. The results are indicative for
the potentialities of the pulsed-field wireless signal transfer concern-
ing the received signal characteristics and the system’s compliance
with regulatory specifications on ElectroMagnetic Emission.

1 Introduction

Wireless data transfer is cornerstone to information technology, whether
for providing network access to the exploding number of mobile terminals or
for ensuring wireless integrated circuit (IC) interconnects [1–5]. The prac-
tical realisation of such systems is the subject of extensive research, with
investigations ranging from abstract channel management principles to
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concrete IC implementations. However, prior to approaching such matters,
two questions as to the wireless links’ functionality have to be addressed:
are the signal levels involved sufficiently high for their proper system per-
formance, and do the (inevitable) field emission levels comply with the per-
taining (international) regulations on ElectroMagnetic Interference (EMI)?

It is now stressed that digital electronic systems inherently operate in
the time domain. Hence, an investigation into their properties is naturally,
and most adequately, carried out with time-domain (rather than frequency-
domain), analytical and computational, mathematical tools. In this re-
spect, [6] formulated a full time-domain methodology for analysing the sus-
ceptibility of microwave electronic circuits to pulsed field electromagnetic
(EM) disturbances.

Emitter
EM radiative

coupling

Susceptor

Figure 1: The ElectroMagnetic Interference (EMI) triptych.

The framework in [6] is used as a starting point to studying a configu-
ration consisting of a single transmitting loop and a single receiving loop in
free space – the simplest representative circuit instantiation of the standard
EMI-triptych (see Fig. 1) in the realm of wireless signal transfer. The trans-
mitting loop is excited by a suitable pulsed electric current. The open-circuit
generator voltage source of the equivalent Thévenin Kirchhoff circuit of the
receiving loop is determined via Faraday’s induction law. In the model, the
loops are located in free space and the coupling pulsed magnetic field is cal-
culated from the Maxwell field equations. Once the mechanisms governing
the signal performance of this simple (in fact, the simplest) model config-
uration are fully understood, the more complicated configurations met in
practice can become amenable to further analysis.

As to the electromagnetic emission properties of the system, the time-
domain magnetic field that performs the wireless signal transmission carries
the full information. Whether or not this field interferes with other digital
electronic systems, too, is a matter of pulsed field and is of concern to the
designer. However, international, in particular, Federal Communications
Commission (FCC) regulations on electromagnetic emission and Electro-
Magnetic Interference (EMI), are still exclusively formulated in terms of the
frequency-domain properties of devices and systems (with [7, 8] as the most
widely cited ultra wide-band (UWB) emission regulation). It is, a priori
unclear in which sense these two aspects share a range of compatibility, but
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a discussion on this matter is outside the scope of this study.

This work proceeds now by evaluating the loop-to-loop signal transfer
and the pertaining energy spectral density of the emitted field, the employed
formulation following that in [9]. The ensuing numerical results illustrate the
complexity and the intricateness in already this, simplest, configuration. A
first study will concern the signal level assessment, the transmitting loop
being fed by a monocycle pulse electric current (with no electric charge
transport over time)1. We will then study the emission level compliance for
the loop-to-loop signal transfer, the transmitting loop being fed in that case
by an UWB, causal pulse with a spectral behaviour that adequately fills the
spectral masks in [8].

2 Prerequisites

2.1 Description of the configuration

AT

LT

AR

LR

X
ε0, μ0

Figure 2: Configuration concerning the pulsed signal transfer between a
transmitting wire loop LT and a receiving wire loop LR.

The discussed configuration is shown in Fig. 2. In it, position is specified
by the coordinates {x, y, z} with respect to a Cartesian reference frame with
the origin O and the three mutually perpendicular base vectors {ix, iy, iz}
of unit length each that, in the indicated order, form a right-handed system.
The position vector is x = xix + yiy + ziz. The time coordinate is t. The
transmitting loop LT has x = xT as its reference center and AT = iATAT

(with |iAT | = 1) as its vectorial area. The receiving loop LR has x = xR

as its reference center and AR = iARAR (with |iAR | = 1) as its vectorial
area. The relative vectorial position of the loops is X = xR − xT (with

1For the exciting monocycle pulse we use a mathematical model with three parame-
ters that comply both with the International Electrotechnical Vocabulary (IEV) of the
International Electrotechnical Commission (IEC) [10] and with signal processing usage.
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X/|X | = Ξ). The included angle between Ξ and iAT is ϑ. The coupling
path between the loops is free space, with electric permittivity ε0, magnetic
permeability μ0 and wave speed c0 = (ε0μ0)

−1/2. The loops are assumed to
have maximum diameters that are small compared with the spatial extent
of the exciting pulses.

2.2 The exciting pulses

The excitation of the transmitting loop is taken as pulsed electric currents
having a causal time behaviour. The following pulses will be employed:

• the time differentiated power exponential pulse (∂tPE) [14] (see Ap-
pendix A.1);

• the power exponential modulated – sinc-cosine pulse (PE–sinc-cosine)
[15] (see Appendix A.2).

2.3 The radiated field

By denoting as t′ = t − |X |/c0 the wave travel time retarded, time
coordinate, the magnetic field strength HT generated by LT is given by [11,
p. 761]

HT(X , t) =
AT

4π|X |3
{
ΘNF

H

[
IT(t′) +

|X |
c0

∂tI
T(t′)

]
+ΘFF

H

|X|2
c20

∂2
t I

T(t′)
}
(1)

in which
ΘNF

H (iAT ,Ξ) = 3
(
Ξ·iAT

)
Ξ− iAT (2)

is the near-field radiated field directional characteristic and

ΘFF
H (iAT ,Ξ) =

(
Ξ·iAT

)
Ξ− iAT (3)

is the far-field radiated field directional characteristic.

2.4 Receiving loop equivalent Thévenin circuit

Application of the electromagnetic reciprocity theorem of the time-convolution
type leads to the following expression for the equivalent Thévenin circuit
generator voltage in LR [12]

V G(X, t′) = −μ0A
TAR

4π|X |3
{
ΘNF(iAT , iAR ,Ξ)

[
∂tI

T(t′)+
|X |
c0

∂2
t I

T(t′)
]

+ΘFF(iAT , iAR ,Ξ)
|X |2
c20

∂3
t I

T(t′)
}

(4)
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in which

ΘNF(iAT , iAR ,Ξ) = 3
(
Ξ·iAT

) (
Ξ·iAR

)− iAT·iAR (5)

is the near-field directional characteristic and

ΘFF(iAT , iAR ,Ξ) =
(
Ξ·iAT

) (
Ξ·iAR

)− iAT·iAR (6)

is the far-field directional characteristic.

3 Loop-to-loop signal transfer

The loop-to-loop signal transfer is analysed for the two canonical con-
figurations in Fig. 3. The case of two parallel loops is representative of for
planar microelectronic configurations, the case of two perpendicular loops
for 3D microelectronic ones. In the realm of microelectronic circuit design
the parameters that are more or less open to choice are: the mutual orien-
tation of the loops, in general, their mutual distance and the parameters of
the pulse shape. Some of these are discussed below.

AT

LT

AR

LR

X
ϑ

ε0, μ0

a

AT

LT

ARLR

X
ϑ

b

Figure 3: Canonic configurations for the study of the pulsed signal transfer in
a loop-to-loop wireless signal transfer. (a) Mutually parallel loops AT·AR =
ATAR; (b) mutually perpendicular loops AT·AR = 0.

Mutually parallel loops

In this case, AT·AR = ATAR and the directional characteristics are

ΘNF(iAT , iAR ,Ξ) = 3 cos2(ϑ)− 1 (7)

ΘFF(iAT , iAR ,Ξ) = cos2(ϑ)− 1. (8)
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These expressions show that the near-field constituent yields zero contri-
bution to V G(X , t′) for cos(ϑ) = ±3−1/2 and that the far-field constituent
yields zero contribution for cos(ϑ) = ±1.

Mutually perpendicular loops

In this case, (AT·AR = 0) and the directional characteristics expressed
in terms of the standard spherical coordinates {ϑ,ϕ}2 are

ΘNF(iAT , iAR ,Ξ) = (3/2) sin(2ϑ) sin(ϕ) (9)

ΘFF(iAT , iAR ,Ξ) = (1/2) sin(2ϑ) sin(ϕ) (10)

implying that V G(X , t′) vanishes at ϑ = {0, π/2, π} and at ϕ = {0, π}.

Figure 4: Angular dependence of the directional characteristics for ϕ = π/2.

The directional characteristics (7)–(10) are plotted in Fig. 4. It evidences
that the mutually parallel configuration allows obtaining stronger loop-to-
loop link signals. The figure also shows the orientations that provide the best
coupling and those with vanishing coupling. This information is relevant for
the design of wireless signal transfer systems.

4 Energy spectral density of the emitted field

The FCC regulations identify the power spectral density of the emitted
field as the quantity for which admissible levels are specified [8]. Since this
work concerns pulsed fields, we interpret these regulations as applying to the

2The spherical coordinate system has the origin at the center of the transmitting wire
loop, iAT is the polar axis and ϕ measures the trigonometric rotation from iAR .
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energy spectral density of the emitted field. Furthermore, for a proper infor-
mation transfer in a pulse-operated communication system, pulse crowding
is to be avoided. The regulation can then be taken to apply to a single
pulse. In view of these considerations, the energy spectral density of the
electromagnetic field emitted by the transmitting loop is determined. Since
the embedding medium is lossless, the total energy radiated by the loop
follows from the corresponding expression in the far-field region. Upon writ-
ing [11, Section 26.10]

{ET,HT}(X , t) =
{ET;∞,HT;∞}(Ξ, t−|X|/c0)

4π|X | [1+o(1)] as |X | → ∞ (11)

in which, on account of (1),

HT;∞(Ξ, t) = ATΘFF
H

1

c20
∂2
t I

T(t) (12)

and

ET;∞(Ξ, t) = (μ0/ε0)
1/2HT;∞(Ξ, t)×Ξ (13)

the total energy W rad radiated by the loop is

W rad =

(
1

4π

)2(μ0

ε0

)1/2 ∫
Ξ∈Ω

dΩ

∫ ∞

t=−∞
|HT;∞(Ξ, t)|2dt (14)

where Ω = {|Ξ| = 1} is the sphere of unit radius. In view of Parseval’s
theorem, this expression is equivalent to

W rad =

∫ ∞

f=−∞
wrad(f)df = 2

∫ ∞

f=0
wrad(f)df (15)

in which the energy spectral density wrad(f) of the radiated field is given by

wrad(f) =

(
1

4π

)2(μ0

ε0

)1/2∫
Ξ∈Ω

|ĤT;∞
(Ξ, 2πjf)|2dΩ. (16)

Using (12), together with∫
Ξ∈Ω

ΘFF
H ·ΘFF

H dΩ =
8π

3
(17)

we obtain

W rad(f) =
8π

3

(
AT

4π

)2(
μ0

ε0

)1/2 1

c40

∫ ∞
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[
∂2
t I(t)
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and

wrad(f) =
8π3

3
(AT)2

(
μ0

ε0

)1/2 1

c40
f4|ÎT(2πj f)|2. (19)

Substitution of (22) in (19) yields the thought for energy spectral density of
the emitted field in closed-form. This quantity is to be compared with pre-
scribed spectral masks for verifying the system’s compliance with regulatory
specifications, an approach that will be used in Section 5.2.

5 Illustrative numerical results

Some illustrative numerical results are now discussed for the case of two
mutually parallel, identical small loops with AT = AR = 0.0314mm2 (for
circular loops, this amounts to a diameter of 0.2mm, a dimension that is
consistent with the implementation choices in [13]).

5.1 Loop-to-loop signal transfer

The feeding pulse employed in this experiment is a ∂tPE with the pa-
rameters: Ipeak = 1mA, tr = 0.1 ns and ν = 4 (see Appendix A.1 for its
time signature and spectral diagram).

The receiving antenna response is evaluated at:

• |X| = 2mm – an upper bound for:the inter-spacing between loops
located inside the same IC (see Fig. 5 (a)); this study is relevant for
signal transfer in intra-chip communication;

• |X| = 50mm – representative for the inter-spacing between widely
spaced IC’s of the same device or between IC’s of nearby located de-
vices, (see Fig. 5 (b)); this study is relevant for an EMI evaluation.

The magnitude of the first peak |V G| at |X| = 2mm (where the ∂tI
T(t)

behavior dominates) is approximately 3.1μV, a value that can be easily
detected with standard circuitry. As predicted by (7), the peak value cor-
responds to ϑ = 0◦ that, in view of the IC’s characteristic flat aspect ratio,
corresponds to the most frequently encountered situation. However, note
that the change in sign of the first peak for ϑ > arccos

(
3−1/2

)
can lead to

difficulties in interpreting the information contained in a succession of pulses.

At |X | = 50mm (where the ∂3
t I

T(t) behavior dominates) the magnitude
of the peak |V G| drops drastically to below 2.3 nV a value that can be ade-
quately suppressed by the immunity rejection circuitry of the ‘victim’ IC’s.
As predicted by (8), the peak value corresponds to ϑ = 90◦.
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Figure 5: Pulsed signal transfer between mutually parallel loops. LT is ex-
cited by means of a ∂tPE. (a) Receive antenna response for |X| = 2mm
(predominantly ∂tI

T(t) behavior); (b) Receive antenna response for |X | =
50mm (predominantly ∂3

t I
T(t) behavior). The purple vertical lines corre-

spond to ϑ = arccos
(
3−1/2

)
.

It must be noted that the conditions under which this analysis was car-
ried out are highly idealized, namely unobstructed, free space radiative cou-
pling path between the emitter and the susceptor. The link inside a real
IC occurs in an highly heterogeneous environment that will distort and at-
tenuate severely the received signals. Nonetheless, our analysis evidences
the potentiality of the loop-to-loop wireless interconnect to establish a viable
intra-chip link, that is a requisite first step in any design process and pro-
vides a valuable interpretation instrument for the signal processing aiming
at recovering the original signal. Furthermore, from an EMI perspective,
it gives an impression of the orders of magnitude that can be expected in
another ‘victim’ IC using a similar intra-chip signal transfer technology.
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5.2 Energy spectral density analysis

This analysis is carried out based on (19) for the chosen transmitting
wire loop. The spectral behaviour of the emitted magnetic field is assessed
against the normalised FCC mask for UWB hand-held systems [8, p. K.36]
in the 3.1–10.6 GHz frequency band. To this end, the feeding current pulse
is taken as a PE–sinc-cosine (see Appendix A.2) with parameters: Ksc = 10,
ν = 3, B = 7.5GHz and fc = 6.85GHz. As shown in Fig. 8, the spectral
diagram of this pulse fills almost completely the prescribed mask, with a
practically flat, wide-band behaviour and a steep falloff outside this band,
yielding a -19.15 dB normalised energy spectral density level at both 3.1GHz
and 10.6GHz.

The energy spectral density is plotted in Fig. 6, evidencing the full com-
pliance of the loop-to-loop transfer for the chosen UWB feeding pulse. It
then follows that for this pulse signature the selection of the feeding current
I0 for ensuring compliance with regulatory specifications must be done based
on the mask level at 10GHz. This value is then used for verifying the sys-
tem’s functionality by performing the loop-to-loop signal transfer analysis.
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Figure 6: Energy spectral density assessment. The shaded area corresponds
to the normalised FCC mask for UWB hand-held systems [8, p. K.36].

6 Conclusions

The loop-to-loop pulsed electromagnetic field wireless signal transfer was
investigated in configurations that are of relevance for microelectronic sys-
tems and devices. The derived closed-form expressions for the emitted mag-
netic field and for the open-circuit voltage of the receiving loop provide
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valuable design rules as concerns the influence of the mutual orientation of
the loops and of the parameters of the feeding pulse on both the emitted field
(EMI evaluation) and the received pulse (system performance prediction).
Numerical results were given for some configurations that are of relevance for
intra-chip communication systems. The results highlighted the potentiali-
ties of the pulsed-field wireless signal transfer for the relevant application but
also evidenced the intricate received pulses’ dependence on the relative ori-
entation of the loops, an aspect that may result in difficulties in interpreting
the transferred information. The compliance with regulatory specifications
on ElectroMagnetic Emission was studied by evaluating the behavior of the
energy spectral density in the FCC ultra wide-band spectrum.

Appendix

A The exciting pulses

A.1 The time differentiated power exponential pulse

The ∂tPE pulse follows as the time derivative of the IEC 60050 – IEV
normalised, unipolar power exponential pulse [14]

I(t) = IpeakN(ν)

(
1− t

t0x

)(
t

t0x

)ν−1

exp

[
−ν

(
t

t0x
− 1

)]
H(t) for ν > 1

(20)
in which Ipeak is the magnitude of the first peak in I(t), t0x is the pulse
zero-crossing time (equaling the pulse rise time tr of the power exponential
pulse), ν is the initial rise power of the latter pulse (which is related to the
high-frequency asymptotic falloff in the corresponding Bode plot) and N(ν)
is the normalisation constant

N(ν) = ν1/2

(
ν1/2

ν1/2 − 1

)ν−1

exp(−ν1/2). (21)

The pulse carries no net electric charge. The time Laplace transform of (20)
is

Î(s) = Ipeak t0x N(ν)
s t0xΓ(ν) exp(ν)

(s t0x + ν)ν+1
for Re(s) > −ν/t0x (22)

where Γ denotes the Euler gamma function. The relevant Fourier transfor-
mation follows from (22) taking s = jω = j2πf , with ω ∈ R denoting the
angular frequency and f ∈ R the frequency.

The normalised time signatures and corresponding normalised spectral
diagrams of the ∂tPE pulse used in Section 5.1 are given in Fig. 7.
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Figure 7: ∂tPE pulse with ν = 5. (a) Normalised time signature; (b) nor-
malised spectral diagrams.

A.2 The power exponential modulated – sinc-cosine pulse

This pulse is constructed by using the IEC 60050 – IEV normalised, unipo-
lar power exponential pulse [14]

IPE(t) = I0 (t/tr)
ν exp [−ν (t/tr − 1)]H(t) (23)

in which I0 denotes the pulse amplitude, tr > 0 the pulse rise time, ν > 0
the pulse power and H(t) the Heaviside unit step function, as an envelope
for the a non-causal sinc-cosine function (carrier)

G(t) = sinc[B(t− t0)] cos [2πfc(t− t0)] (24)
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in which

sinc(x)
def
=

sin(πx)

πx
x ∈ R (25)

t0 is an arbitrary delay, B = fh − fl, with 0 < fl < fh, is a (prescribed)
bandwidth and fc = (fl+ fh)/2. By taking t0 = tr, the PE–sinc-cosine pulse
follows as

I(t) = I0 (t/tr)
ν sinc [B(t− tr)] cos [2πfc(t− tr)]

exp [−ν (t/tr − 1)]H(t). (26)

For simplicity, we confine ν to integer values, only. Furthermore, in our
experiments we interrelate B and tr via

tr = Ksc/B, with Ksc = 1, 2, 3, . . . (27)

The Fourier transform of the PE–sinc-cosine pulse is obtained by applying
the convolution theorem [16, p. 115] this yielding

Î(jω) =
1

2π

[
ÎPE(jω)

(jω)∗ Ĝ(jω)

]

= I0
exp(−jωtr)

4πB
[I (ω − ωh, ω − ωl) + I (ω + ωl, ω + ωh)] (28)

where
(jω)∗ denotes frequency convolution and

I (ωi, ωf) =

∫ ωf

ωi

[
exp(jω′tr)P̂ (jω′)

]
dω′

= I0 tr Γ(ν + 1) exp(ν)

∫ ωf

ωi

exp(jω′tr)
(j tr ω′ + ν)ν+1 dω

′

= I0

(
exp(ν)

∫ trωf

trωi

exp(j ξ)

j ξ + ν
dξ + j

ν∑
m=1

{
Γ(m)

[
exp(α)α−ν+m−1

]∣∣αf

αi

})
(29)

with αi = j tr ωi + ν and αf = j tr ωf + ν. The integral arrived at in (29)
cannot be solved analytically but is amenable to numeric evaluation, e.g.,
by means of the Matlab R© quadl function.

The normalised time signatures and corresponding normalised spectral
diagrams of the PE–sinc-cosine pulse used in Section 5.2 are given in Fig. 8.
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|Î(
j2

π
f
)|/

|Î|
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