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1 Abstract 

 
 
In the fall of 2000, several talks were delivered by K. Meyl [1]. These talks described 
his theory of so-called Tesla’s scalar waves. 
The scalar wave, according to Meyl, is an irrotational electric vector solution E of the 
homogeneous wave equation having non-vanishing sources. GERHARD W. BRUHN, 
Darmstadt University of Technology, Department of Mathematics [2], has 
theoretically proven that Meyl’s scalar waves do not exist. 
 
In the following report, we shall discuss the experimental set-up that K. Meyl used to 
demonstrate his theory. It is found that the set-up is a classical short antenna that is 
brought into resonance by means of inductive and capacitive loading. 
One of the loadings is used as source and the other as load. In this way power is 
transferred from one end to the other by means of the current into the antenna wire. 
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2 Introduction 

 
The front page of the patent DE10348862 B4 [3] is shown below. The set-up used 
by K. Meyl to demonstrate his scalar wave theory is explained herein. We designed 
a similar set-up that complies with the patent description to show that no scalar 
waves are involved. 
 
 

 
Front page patent 
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3 Schematic 

 
The complete schematic can be seen below consisting of unit 1 and unit 2 connected 
with a single wire. 
 
 

Schematic evaluation set-up 
 

 

Pancake coil
Broadband 

transformer

wire

rod

sphere

Signal generator

 
 

4 Construction details 

 
 
The coils are attached to a PVC flat panel. The “antenna” is made of a steel tube with 
at the end an aluminium sphere. 
 
The pancake coil which is spiral from the inside outward wound according to Tesla, is 
part of an air cored transformer. The couple coil consists of five turns and is on the 
outside of the secondary coil. 
 
A broadband impedance transformer transforms the 12.5 ohm input impedance of the 
primary coil to 50 ohm. 
 
Coils:  
 
Type   flat construction 
Wire   0.4mm diameter lacquered copper 
Primary turns  5 
Secondary turns 73 
Winding direction clock wise first unit, counter clockwise second unit 
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Broadband transformer: 
 
Type    Transmission line 
Ratio    4 to 1 
Windings   bifilar, 9 windings on ring core 4C6 material 
 
 

Top view of Unit 1 
 

 
 

Bottom view of Unit 1 
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5 Measurements 

 

5.1 Two units close together 

 
Both units are connected to a VNA (Vector network analyser) to measure the transfer 
function, S21. 

Set-up of he 2 units 
 

 
 
 

S21 response [db] 
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The total set-up behaves as a band pass filter. Band pass filters may have 2 or more 
poles. Usually two resonating circuits are coupled by means of capacitors and/or 
inductors. In this set-up we have 2 resonating circuits at the same frequency that are 
coupled by means of the wire and the capacitance formed between the two spheres. 
 
 

S11 response 
 

 
 
 
 

The input impedance can be seen at the graph above. This is a Smith Chart 
representation of the input reflection coefficient. The bigger circle is the 
representation of the input impedance of unit 1 and is close to 50 ohm at resonance. 
The smaller circle is the influence from unit 2. Both units are “over coupled”. 
 
 
 
A sinus signal generator of 2Vpp at 4.9 MHz driving unit 1 can lit up the LED’s at unit 
2. 
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5.2 Two units 1 meter separated 

 
Both units are connected to the VNA (Vector network analyser) to measure the 
transfer function, S21 and input impedance. 

 
 

Setup units 
 

 
 

S21 response [db] with wire 
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The set-up behaves as a band pass filter. Usually two resonating circuits are coupled 
by means of capacitors and/or inductors. In this set-up we have 2 resonating circuits 
at the same frequency and coupling by means of the wire and much less by the 
capacitance formed between the two spheres. The transfer of power is the same as 
with the very close set-up. 
 

S21 response [db] without wire 
 

 
 
Here we can see that the coupling is mainly due to the wire. This can be seen in the 
graph above since the power transfer is reduced with 18 db when the wire is 
disconnected. This means that the coupling due the two spheres is very low. 
 

S11 response 
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The input impedance can be seen at the graph above. The bigger circle is the 
representation of the input impedance of unit 1 and is close to 50 ohm at resonance 
while the smaller circle is a representation of the influence of unit 2. Both units are 
now “week coupled”. 
 
A sinus signal generator of 2Vpp at 4.9 MHz driving unit 1 can lit up the LED’s at unit 
2 when the wire is connected. 
 
A sinus signal generator of 2Vpp at 4.9 MHz driving unit 1 can NOT lit up the LED’s 
at unit 2 when the wire is not connected. 
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5.3 Two units 10 meters separated 

 
Both units are connected via a long wire and placed non-line of sight at 10 meter 
distance from each other. 
 
A sinus signal generator of 2Vpp at 4.9 MHz driving unit 1 can lit up the LED’s at unit 
2 when the wire is connected. 
 
A sinus signal generator of 2Vpp at 4.9 MHz driving unit 1 can NOT lit up the LED’s 
at unit 2 when the wire is not connected. 
 
 
To investigate the mechanism of power transfer the current in the wire and the fields 
are measured at unit 2. 
 

Current probe to measure the current in the wire 
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Electric antenna probe to measure the electric field 
 

 
 

Magnetic antenna probe to measure the magnetic field 
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Current along the wire 
 

 
 
 
 
 

Electric field strength near unit 2 
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Magnetic field strength near unit 2 
 

 
 

As can be seen in the graphs above there is an electric and magnetic field near unit 
2. We also measured with the VNA that the coupling is now only by means of the 
wire. There is no coupling measured between the two spheres. 
  
The explanation is very simple once we observe the set-up as “one antenna”. The 
wire serves as one part of the antenna. Everywhere along the wire we measured 
electric and magnetic field. 
 
The drawing below shows a resonant dipole antenna. The shortest length of a 
resonant dipole antenna is the wavelength divided by two.  If the physical length is 
not too short the antenna can be resonated to a longer wavelength by means of coils 
or resonators near the ends of the wire. This is a well known technique and can be 
found in any professional antenna handbook [4]. 
 
The current distribution in such a short antenna can be seen below. The antenna is 
fed in the centre; for example by a signal generator. The current along the antenna is 
maximum at the source and reduces towards the ends of the wire and is heavily 
reduced along the coils. The resonance frequency is further reduced by the 
conducting structures at the ends. This part is also called end loading. 
 

Current distribution
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If we now redraw our set-up with unit 1 and unit 2 in the form of the coil loaded 
resonant dipole antenna than we have the drawing below. This is very similar than 
the resonant dipole antenna that we discussed. In this case the feeding is not done in 
the centre but at the end. This influences the current distribution along the antenna. 
The wavelength is 63 meter for 4.9 MHz. A resonant wire dipole antenna would 
require 31.5 meter length. The wire in our test cases was between 1 and 10 meter 
and is electrically enlarged by the pancake coils to 31.5 meters. 
 
 
 
 

Current distribution

 
 
 
Now it is clear why unit 2 may be placed relative far away from unit 1 for activating 
the LED´s at unit 2. Unit 2 is only a part of the antenna that is physically still very 
short compared with the wavelength. 
 
Now it is also clear why unit 2 can be placed in a Faraday cage and still power is 
transferred. It doesn’t matter where unit 2 is; it is part of the antenna and it receives 
current by means of the wire. 
 
 
 
Sorry but no scalar waves here!  
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COMMENTARY

On the Existence of K. Meyl’s Scalar Waves

GERHARD W. BRUHN

Darmstadt University of Technology, Department of Mathematics,
AG 7, Schloßgartenstrasse, 7 64289 Darmstadt, Germany

e-mail: bruhn@mathematik.tu-darmstadt.de

Abstract—In the fall of 2000, several talks were delivered by K. Meyl. These
talks described his theory of so-called Tesla’s scalar waves (e.g., in Meyl
[“Scalar Waves…” (2000) and “Longitudinalwellen-Experiment…” (2000)],
and on his Web site). In the following article, we shall mainly discuss the the-
oretical part of these publications, although the experimental part would de-
serve a detailed discussion in its own right. The scalar wave, according to
Meyl, is an irrotational electric vector solution E of the homogeneous wave
equation having non-vanishing sources. However, and this is Meyl’s logical
flaw, it is not the homogeneous wave equation but Maxwell’s equations that
are the actual starting point of any theory of electromagnetic waves. And, as
will be seen see in Section 1, the homogeneous wave equation is valid only in
vacuum and in its natural generalization, in homogeneous materials without
free charges and currents, while in other cases the inhomogeneous wave
equation would apply. So in Section 2, our next immediate result is that
Meyl’s source conditions are inconsistent with the material properties.
Hence, we have to assume the vector field E to be source free. But— as will
be shown further for this case—Maxwell’s equations do not admit other than
trivial scalar waves of the Meyl type, since only time- independent solutions
are admissible. Under those conditions, the only permissible conclusion is
that Meyl’s scalar waves do not exist. At the end of his talks (Meyl, “Scalar
Waves…” [2000] and “Longitudinalwellen-Experiment…” [2000]), Meyl
makes another remarkable assertion, which we shall discuss in Section 3.
Meyl claims to have generated ‘vortex’ solutions that propagate faster than
light. But for solutions of the homogeneous wave equation, this would clearly
contradict a well-known theorem of the mathematical theory of the wave
equation. In addition, Meyl’s proof for his claim will turn out to be a simple
flaw of thinking.

1. Maxwell’s Equations

We start by reminding the reader of the initial part of Maxwell’s theory: For a
homogeneous medium of constant dielectricity and constant permeability µ,
Maxwell’s equations read as follows:

curl E = - m
¶ H
¶ t

,

div E = ,

(1)

(2)
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curl H =
¶ E
¶ t

+ j,

div H = 0.

(3)

(4)

Here denotes the density of free charges, and j is the current density caused
by the motions of the free charges. These differential equations are actually
extracted from the original integral relations that describe the well-known
standard experiments of Œrsted, Ampère, Biot, Savart and Faraday. 

Using standard algebra, each of the vector fields H or E can be eliminated.
This yields 

curl curl E +
1
c2

¶ 2E
¶ t2

= m
¶ j
¶ t

and

curl curl H +
1
c2

¶ 2H
¶ t2

= curl j, where
1
c2

= m ; (5)

and by means of the vector identity 

curl curl F = grad div F - F

and using Equations 2 and 4, we obtain the inhomogeneous wave equations

E -
1
c2

¶ 2E
¶ t2

=
1

grad - m
¶ j
¶ t

and H -
1
c2

¶ 2H
¶ t 2

= - curl j. (6)

Thus, restricting ourselves to the normal case of absence of free charges,
where = 0 and j = 0, we obtain the homogeneous Maxwell equations

curl E = - m
¶ H
¶ t

,

div E = 0,

curl H =
¶ E
¶ t

,

div H = 0. (4’)

and the homogeneous wave equations

curl curl E +
1
c2

¶ 2E
¶ t2

= 0 and curl curl H +
1
c2

¶ 2H
¶ t 2

= 0 (5’)

or

E -
1
c2

¶ 2E
¶ t2

= 0 and H -
1
c2

¶ 2H
¶ t2

= 0. (6’)

Conclusion 1. The homogeneous wave equations (6’) are deduced from
Maxwell’s equations under the assumption of the absence of free charges and

(1’)

(2’)

(3’)
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currents. If this assumption is not fulfilled, then only the more general inho-
mogeneous wave equations (6) are valid, and these must be used.

1. Meyl’s Longitudinal Waves

A solution E of the first homogeneous wave equation in Equation 6’, which
satisfies the additional conditions 

curl E = 0 (7)

and

div E = /= 0, (2’’)

is denoted longitudinal by K. Meyl in his talks “Scalar Waves…” (2000) and
“Longitudinalwellen-Experiment…” (2000). But the assumption (2’’) is a log-
ical flaw, since it contradicts the absence of free charges, = 0, in the medium
(e.g., in vacuum). Hence, we obtain 

Conclusion 2. In order to describe waves in a medium without free charges
(e.g., in vacuum or in another homogeneous medium without free charges), we
must use Equation 2’ and not Equation 2’’.

Then we have to discuss solutions of Maxwell’s equations (Equations 1’–4’)
under the additional assumption (7), or—which is equivalent—we have to
look for solutions E of the homogeneous wave equation that are irrotational
and source free. But the first equation (5’) together with (7) yields

¶ 2E
¶ t2

= 0, (8)

which must be fulfilled by Meyl’s longitudinal E-waves. Thus, E is linearly
time-dependent,

E = E0(x) + t E1(x).

But if E1(x) 0, then the energy of the field E contained in some bounded area
would (approximately) increase proportionally to t2. But, in accordance with
energy conservation, the energy should not exceed a fixed constant. Thus, for
energetic reasons, an electric field E linearly increasing with time is impossi-
ble, and we obtain 

E(x,t) = E0(x), (9)

(i.e., time independent fields are the only source-free longitudinal solutions).
(Here E0 has to be an arbitrary solution of E0 = 0. )
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As a consequence of Equation 7, Meyl is allowed to introduce a potential 
(locally) by 

E = - grad (10)

Then, Equation 9 yields the time independency of the potential function ,

(x,t) = 0(x). (11)

Conclusion 3. Maxwell’s equations for media without free charges and cur-
rents do not admit any other than trivial longitudinal waves (E, ) in the man-
ner defined by Meyl. These solutions are not waves since they are time inde-
pendent.

Remarks. The above conclusion is a result of certain discrepancies between
Maxwell’s equations and the wave equation. Of course, every solution of
Maxwell’s equations 1’–4’ will fulfil the wave Equation 6’. But the reverse is
not true, as when, for example, an arbitrary solution for E of Equation 6’ vio-
lates Equation 2’ in general. In other words, as demonstrated above, Maxwell’s
Equations 1’–4’ together with the additional condition (7) cause such strong
restrictions for the vector field E that only trivial longitudinal solutions can
exist.

At the end of his talks (“Scalar Waves…” [2000] and “Longitudinalwellen-
Experiment…” [2000]), Meyl makes another remarkable assertion. He claims
that there exist ‘vortex’ solutions that have velocities faster than light. If these
‘vortex’ solutions were solutions of the homogeneous wave equation, this
would clearly contradict the results of the mathematical theory of the wave
equation. One of the main results of this mathematical theory is that the maxi-
mum signal velocity is c, the velocity of light (cf. e.g., John, 1982; p. 126 ff., or
any other textbook of partial differential equations).

Meyl reports on the 7.0-MHz waves he observed at the receiver during his
experiments, while his (shielded) emitter worked at 4.7 MHz. He explains the
appearance of the higher frequency at the receiver with a higher velocity of the
signal; hence, he concludes, his signal is faster than light.

But an emitter frequency of 4.7 MHz means that the emitter sends 4.7 mil-
lions of waves per second; then by no means can 7.0 millions of waves per sec-
ond can arrive at the receiver, independent of the signal velocity. Where should
the additional number of 2.3 millions of waves have come from? The number
of waves per second at the emitter and at the receiver must agree, whatever the
signal velocity might be. Hence, Meyl’s conclusion of a higher signal velocity
is baseless and a flaw of thinking. (The only possibility of finding out the signal
velocity is to measure the transit time T of the signal over the distance of R be-
tween emitter and receiver. Then the velocity is given by v = R/T. But this is
easier said than done.) Conversely, whenever a signal of 7.0 MHz was detect-
ed at the receiver, it must necessarily have had a source oscillating with the
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same frequency of 7.0 MHz, most likely as an artefact by the electronics, for
example, an intermodulation frequency, which was radiated by an unshielded
cable.

Leaving these experimental difficulties aside, even if Meyl could prove by
reliable measurement that there exist ‘vortex’ solutions faster than light, then
he would have shown by experimental measurement that the wave Equation 6’
could not apply to these ‘vortex’ solutions. But the wave Equation 6’ was
Meyl’s starting point.
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